Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+60x+619=0
Multiply x and x to get x^{2}.
x=\frac{-60±\sqrt{60^{2}-4\times 619}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 60 for b, and 619 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 619}}{2}
Square 60.
x=\frac{-60±\sqrt{3600-2476}}{2}
Multiply -4 times 619.
x=\frac{-60±\sqrt{1124}}{2}
Add 3600 to -2476.
x=\frac{-60±2\sqrt{281}}{2}
Take the square root of 1124.
x=\frac{2\sqrt{281}-60}{2}
Now solve the equation x=\frac{-60±2\sqrt{281}}{2} when ± is plus. Add -60 to 2\sqrt{281}.
x=\sqrt{281}-30
Divide -60+2\sqrt{281} by 2.
x=\frac{-2\sqrt{281}-60}{2}
Now solve the equation x=\frac{-60±2\sqrt{281}}{2} when ± is minus. Subtract 2\sqrt{281} from -60.
x=-\sqrt{281}-30
Divide -60-2\sqrt{281} by 2.
x=\sqrt{281}-30 x=-\sqrt{281}-30
The equation is now solved.
x^{2}+60x+619=0
Multiply x and x to get x^{2}.
x^{2}+60x=-619
Subtract 619 from both sides. Anything subtracted from zero gives its negation.
x^{2}+60x+30^{2}=-619+30^{2}
Divide 60, the coefficient of the x term, by 2 to get 30. Then add the square of 30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+60x+900=-619+900
Square 30.
x^{2}+60x+900=281
Add -619 to 900.
\left(x+30\right)^{2}=281
Factor x^{2}+60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{281}
Take the square root of both sides of the equation.
x+30=\sqrt{281} x+30=-\sqrt{281}
Simplify.
x=\sqrt{281}-30 x=-\sqrt{281}-30
Subtract 30 from both sides of the equation.
x^{2}+60x+619=0
Multiply x and x to get x^{2}.
x=\frac{-60±\sqrt{60^{2}-4\times 619}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 60 for b, and 619 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 619}}{2}
Square 60.
x=\frac{-60±\sqrt{3600-2476}}{2}
Multiply -4 times 619.
x=\frac{-60±\sqrt{1124}}{2}
Add 3600 to -2476.
x=\frac{-60±2\sqrt{281}}{2}
Take the square root of 1124.
x=\frac{2\sqrt{281}-60}{2}
Now solve the equation x=\frac{-60±2\sqrt{281}}{2} when ± is plus. Add -60 to 2\sqrt{281}.
x=\sqrt{281}-30
Divide -60+2\sqrt{281} by 2.
x=\frac{-2\sqrt{281}-60}{2}
Now solve the equation x=\frac{-60±2\sqrt{281}}{2} when ± is minus. Subtract 2\sqrt{281} from -60.
x=-\sqrt{281}-30
Divide -60-2\sqrt{281} by 2.
x=\sqrt{281}-30 x=-\sqrt{281}-30
The equation is now solved.
x^{2}+60x+619=0
Multiply x and x to get x^{2}.
x^{2}+60x=-619
Subtract 619 from both sides. Anything subtracted from zero gives its negation.
x^{2}+60x+30^{2}=-619+30^{2}
Divide 60, the coefficient of the x term, by 2 to get 30. Then add the square of 30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+60x+900=-619+900
Square 30.
x^{2}+60x+900=281
Add -619 to 900.
\left(x+30\right)^{2}=281
Factor x^{2}+60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+30\right)^{2}}=\sqrt{281}
Take the square root of both sides of the equation.
x+30=\sqrt{281} x+30=-\sqrt{281}
Simplify.
x=\sqrt{281}-30 x=-\sqrt{281}-30
Subtract 30 from both sides of the equation.