Solve for x
x=\frac{2x_{2}+x_{3}+23}{4}
Solve for x_2
x_{2}=-\frac{x_{3}}{2}+2x-\frac{23}{2}
Graph
Share
Copied to clipboard
2x_{2}-4x+23=-x_{3}
Subtract x_{3} from both sides. Anything subtracted from zero gives its negation.
-4x+23=-x_{3}-2x_{2}
Subtract 2x_{2} from both sides.
-4x=-x_{3}-2x_{2}-23
Subtract 23 from both sides.
-4x=-2x_{2}-x_{3}-23
The equation is in standard form.
\frac{-4x}{-4}=\frac{-2x_{2}-x_{3}-23}{-4}
Divide both sides by -4.
x=\frac{-2x_{2}-x_{3}-23}{-4}
Dividing by -4 undoes the multiplication by -4.
x=\frac{x_{2}}{2}+\frac{x_{3}}{4}+\frac{23}{4}
Divide -x_{3}-2x_{2}-23 by -4.
2x_{2}-4x+23=-x_{3}
Subtract x_{3} from both sides. Anything subtracted from zero gives its negation.
2x_{2}+23=-x_{3}+4x
Add 4x to both sides.
2x_{2}=-x_{3}+4x-23
Subtract 23 from both sides.
2x_{2}=4x-x_{3}-23
The equation is in standard form.
\frac{2x_{2}}{2}=\frac{4x-x_{3}-23}{2}
Divide both sides by 2.
x_{2}=\frac{4x-x_{3}-23}{2}
Dividing by 2 undoes the multiplication by 2.
x_{2}=-\frac{x_{3}}{2}+2x-\frac{23}{2}
Divide -x_{3}+4x-23 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}