Solve for x
x=10\left(y-4\right)
Solve for y
y=\frac{x+40}{10}
Graph
Share
Copied to clipboard
x\times 0.2-y=y-8
Subtract 8 from both sides.
x\times 0.2=y-8+y
Add y to both sides.
x\times 0.2=2y-8
Combine y and y to get 2y.
0.2x=2y-8
The equation is in standard form.
\frac{0.2x}{0.2}=\frac{2y-8}{0.2}
Multiply both sides by 5.
x=\frac{2y-8}{0.2}
Dividing by 0.2 undoes the multiplication by 0.2.
x=10y-40
Divide -8+2y by 0.2 by multiplying -8+2y by the reciprocal of 0.2.
x\times 0.2+8-y-y=0
Subtract y from both sides.
x\times 0.2+8-2y=0
Combine -y and -y to get -2y.
8-2y=-x\times 0.2
Subtract x\times 0.2 from both sides. Anything subtracted from zero gives its negation.
-2y=-x\times 0.2-8
Subtract 8 from both sides.
-2y=-0.2x-8
Multiply -1 and 0.2 to get -0.2.
-2y=-\frac{x}{5}-8
The equation is in standard form.
\frac{-2y}{-2}=\frac{-\frac{x}{5}-8}{-2}
Divide both sides by -2.
y=\frac{-\frac{x}{5}-8}{-2}
Dividing by -2 undoes the multiplication by -2.
y=\frac{x}{10}+4
Divide -\frac{x}{5}-8 by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}