Solve for x
x=y+\frac{1}{y}
y\neq 0\text{ and }z\neq 0
Solve for y (complex solution)
y=\frac{-\sqrt{x^{2}-4}+x}{2}
y=\frac{\sqrt{x^{2}-4}+x}{2}\text{, }z\neq 0
Solve for y
y=\frac{-\sqrt{x^{2}-4}+x}{2}
y=\frac{\sqrt{x^{2}-4}+x}{2}\text{, }z\neq 0\text{ and }|x|\geq 2
Share
Copied to clipboard
zx-yz=\frac{z}{y}
Multiply both sides of the equation by z.
zx=\frac{z}{y}+yz
Add yz to both sides.
zx=\frac{z}{y}+\frac{yzy}{y}
To add or subtract expressions, expand them to make their denominators the same. Multiply yz times \frac{y}{y}.
zx=\frac{z+yzy}{y}
Since \frac{z}{y} and \frac{yzy}{y} have the same denominator, add them by adding their numerators.
zx=\frac{z+y^{2}z}{y}
Do the multiplications in z+yzy.
zxy=z+y^{2}z
Multiply both sides of the equation by y.
yzx=zy^{2}+z
The equation is in standard form.
\frac{yzx}{yz}=\frac{zy^{2}+z}{yz}
Divide both sides by zy.
x=\frac{zy^{2}+z}{yz}
Dividing by zy undoes the multiplication by zy.
x=y+\frac{1}{y}
Divide z+zy^{2} by zy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}