Solve for y (complex solution)
y=-\frac{\sqrt{x^{2}}}{9}+x
Solve for y
y=-\frac{|x|}{9}+x
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{9y}{10}\text{, }&y=0\text{ or }arg(y)\geq \pi \\x=\frac{9y}{8}\text{, }&y=0\text{ or }arg(y)<\pi \end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{9y}{8}\text{, }&y\geq 0\\x=\frac{9y}{10}\text{, }&y\leq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
9x-9y=\sqrt{x^{2}}
Multiply both sides of the equation by 9.
-9y=\sqrt{x^{2}}-9x
Subtract 9x from both sides.
\frac{-9y}{-9}=\frac{\sqrt{x^{2}}-9x}{-9}
Divide both sides by -9.
y=\frac{\sqrt{x^{2}}-9x}{-9}
Dividing by -9 undoes the multiplication by -9.
y=-\frac{\sqrt{x^{2}}}{9}+x
Divide \sqrt{x^{2}}-9x by -9.
9x-9y=\sqrt{x^{2}}
Multiply both sides of the equation by 9.
-9y=\sqrt{x^{2}}-9x
Subtract 9x from both sides.
\frac{-9y}{-9}=\frac{|x|-9x}{-9}
Divide both sides by -9.
y=\frac{|x|-9x}{-9}
Dividing by -9 undoes the multiplication by -9.
y=-\frac{|x|}{9}+x
Divide |x|-9x by -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}