Factor
\frac{\left(1015004608-45\sqrt{5}\right)x}{1017273958}
Evaluate
\frac{\left(1015004608-45\sqrt{5}\right)x}{1017273958}
Graph
Quiz
Algebra
5 problems similar to:
x-x \times \frac{ 45 }{ { 82 }^{ 2 } 3- \sqrt{ 2 \times 2 \div 5 } }
Share
Copied to clipboard
factor(x-x\times \frac{45}{6724\times 3-\sqrt{\frac{2\times 2}{5}}})
Calculate 82 to the power of 2 and get 6724.
factor(x-x\times \frac{45}{20172-\sqrt{\frac{2\times 2}{5}}})
Multiply 6724 and 3 to get 20172.
factor(x-x\times \frac{45}{20172-\sqrt{\frac{4}{5}}})
Multiply 2 and 2 to get 4.
factor(x-x\times \frac{45}{20172-\frac{\sqrt{4}}{\sqrt{5}}})
Rewrite the square root of the division \sqrt{\frac{4}{5}} as the division of square roots \frac{\sqrt{4}}{\sqrt{5}}.
factor(x-x\times \frac{45}{20172-\frac{2}{\sqrt{5}}})
Calculate the square root of 4 and get 2.
factor(x-x\times \frac{45}{20172-\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}})
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
factor(x-x\times \frac{45}{20172-\frac{2\sqrt{5}}{5}})
The square of \sqrt{5} is 5.
factor(x-x\times \frac{45}{\frac{20172\times 5}{5}-\frac{2\sqrt{5}}{5}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 20172 times \frac{5}{5}.
factor(x-x\times \frac{45}{\frac{20172\times 5-2\sqrt{5}}{5}})
Since \frac{20172\times 5}{5} and \frac{2\sqrt{5}}{5} have the same denominator, subtract them by subtracting their numerators.
factor(x-x\times \frac{45}{\frac{100860-2\sqrt{5}}{5}})
Do the multiplications in 20172\times 5-2\sqrt{5}.
factor(x-x\times \frac{45\times 5}{100860-2\sqrt{5}})
Divide 45 by \frac{100860-2\sqrt{5}}{5} by multiplying 45 by the reciprocal of \frac{100860-2\sqrt{5}}{5}.
factor(x-x\times \frac{45\times 5\left(100860+2\sqrt{5}\right)}{\left(100860-2\sqrt{5}\right)\left(100860+2\sqrt{5}\right)})
Rationalize the denominator of \frac{45\times 5}{100860-2\sqrt{5}} by multiplying numerator and denominator by 100860+2\sqrt{5}.
factor(x-x\times \frac{45\times 5\left(100860+2\sqrt{5}\right)}{100860^{2}-\left(-2\sqrt{5}\right)^{2}})
Consider \left(100860-2\sqrt{5}\right)\left(100860+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{100860^{2}-\left(-2\sqrt{5}\right)^{2}})
Multiply 45 and 5 to get 225.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{10172739600-\left(-2\sqrt{5}\right)^{2}})
Calculate 100860 to the power of 2 and get 10172739600.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{10172739600-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}})
Expand \left(-2\sqrt{5}\right)^{2}.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{10172739600-4\left(\sqrt{5}\right)^{2}})
Calculate -2 to the power of 2 and get 4.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{10172739600-4\times 5})
The square of \sqrt{5} is 5.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{10172739600-20})
Multiply 4 and 5 to get 20.
factor(x-x\times \frac{225\left(100860+2\sqrt{5}\right)}{10172739580})
Subtract 20 from 10172739600 to get 10172739580.
factor(x-x\times \frac{45}{2034547916}\left(100860+2\sqrt{5}\right))
Divide 225\left(100860+2\sqrt{5}\right) by 10172739580 to get \frac{45}{2034547916}\left(100860+2\sqrt{5}\right).
factor(x-x\left(\frac{45}{2034547916}\times 100860+\frac{45}{2034547916}\times 2\sqrt{5}\right))
Use the distributive property to multiply \frac{45}{2034547916} by 100860+2\sqrt{5}.
factor(x-x\left(\frac{45\times 100860}{2034547916}+\frac{45}{2034547916}\times 2\sqrt{5}\right))
Express \frac{45}{2034547916}\times 100860 as a single fraction.
factor(x-x\left(\frac{4538700}{2034547916}+\frac{45}{2034547916}\times 2\sqrt{5}\right))
Multiply 45 and 100860 to get 4538700.
factor(x-x\left(\frac{1134675}{508636979}+\frac{45}{2034547916}\times 2\sqrt{5}\right))
Reduce the fraction \frac{4538700}{2034547916} to lowest terms by extracting and canceling out 4.
factor(x-x\left(\frac{1134675}{508636979}+\frac{45\times 2}{2034547916}\sqrt{5}\right))
Express \frac{45}{2034547916}\times 2 as a single fraction.
factor(x-x\left(\frac{1134675}{508636979}+\frac{90}{2034547916}\sqrt{5}\right))
Multiply 45 and 2 to get 90.
factor(x-x\left(\frac{1134675}{508636979}+\frac{45}{1017273958}\sqrt{5}\right))
Reduce the fraction \frac{90}{2034547916} to lowest terms by extracting and canceling out 2.
factor(x-\left(x\times \frac{1134675}{508636979}+x\times \frac{45}{1017273958}\sqrt{5}\right))
Use the distributive property to multiply x by \frac{1134675}{508636979}+\frac{45}{1017273958}\sqrt{5}.
factor(x-x\times \frac{1134675}{508636979}-x\times \frac{45}{1017273958}\sqrt{5})
To find the opposite of x\times \frac{1134675}{508636979}+x\times \frac{45}{1017273958}\sqrt{5}, find the opposite of each term.
factor(x-\frac{1134675}{508636979}x-x\times \frac{45}{1017273958}\sqrt{5})
Multiply -1 and \frac{1134675}{508636979} to get -\frac{1134675}{508636979}.
factor(\frac{507502304}{508636979}x-x\times \frac{45}{1017273958}\sqrt{5})
Combine x and -\frac{1134675}{508636979}x to get \frac{507502304}{508636979}x.
factor(\frac{507502304}{508636979}x-\frac{45}{1017273958}x\sqrt{5})
Multiply -1 and \frac{45}{1017273958} to get -\frac{45}{1017273958}.
\frac{1015004608x-45x\sqrt{5}}{1017273958}
Factor out \frac{1}{1017273958}.
x\left(1015004608-45\sqrt{5}\right)
Consider 1015004608x-45x\sqrt{5}. Factor out x.
\frac{x\left(1015004608-45\sqrt{5}\right)}{1017273958}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}