Solve for x
x=30
Graph
Share
Copied to clipboard
x-15=\left(105-x\right)\times \frac{1}{5}
Add 90 and 15 to get 105.
x-15=105\times \frac{1}{5}-x\times \frac{1}{5}
Use the distributive property to multiply 105-x by \frac{1}{5}.
x-15=\frac{105}{5}-x\times \frac{1}{5}
Multiply 105 and \frac{1}{5} to get \frac{105}{5}.
x-15=21-x\times \frac{1}{5}
Divide 105 by 5 to get 21.
x-15=21-\frac{1}{5}x
Multiply -1 and \frac{1}{5} to get -\frac{1}{5}.
x-15+\frac{1}{5}x=21
Add \frac{1}{5}x to both sides.
\frac{6}{5}x-15=21
Combine x and \frac{1}{5}x to get \frac{6}{5}x.
\frac{6}{5}x=21+15
Add 15 to both sides.
\frac{6}{5}x=36
Add 21 and 15 to get 36.
x=36\times \frac{5}{6}
Multiply both sides by \frac{5}{6}, the reciprocal of \frac{6}{5}.
x=\frac{36\times 5}{6}
Express 36\times \frac{5}{6} as a single fraction.
x=\frac{180}{6}
Multiply 36 and 5 to get 180.
x=30
Divide 180 by 6 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}