Solve for x
x=\sqrt{3}+2\approx 3.732050808
Graph
Share
Copied to clipboard
\left(x-1\right)^{2}=\left(\sqrt{2x}\right)^{2}
Square both sides of the equation.
x^{2}-2x+1=\left(\sqrt{2x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=2x
Calculate \sqrt{2x} to the power of 2 and get 2x.
x^{2}-2x+1-2x=0
Subtract 2x from both sides.
x^{2}-4x+1=0
Combine -2x and -2x to get -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{12}}{2}
Add 16 to -4.
x=\frac{-\left(-4\right)±2\sqrt{3}}{2}
Take the square root of 12.
x=\frac{4±2\sqrt{3}}{2}
The opposite of -4 is 4.
x=\frac{2\sqrt{3}+4}{2}
Now solve the equation x=\frac{4±2\sqrt{3}}{2} when ± is plus. Add 4 to 2\sqrt{3}.
x=\sqrt{3}+2
Divide 4+2\sqrt{3} by 2.
x=\frac{4-2\sqrt{3}}{2}
Now solve the equation x=\frac{4±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from 4.
x=2-\sqrt{3}
Divide 4-2\sqrt{3} by 2.
x=\sqrt{3}+2 x=2-\sqrt{3}
The equation is now solved.
\sqrt{3}+2-1=\sqrt{2\left(\sqrt{3}+2\right)}
Substitute \sqrt{3}+2 for x in the equation x-1=\sqrt{2x}.
3^{\frac{1}{2}}+1=3^{\frac{1}{2}}+1
Simplify. The value x=\sqrt{3}+2 satisfies the equation.
2-\sqrt{3}-1=\sqrt{2\left(2-\sqrt{3}\right)}
Substitute 2-\sqrt{3} for x in the equation x-1=\sqrt{2x}.
1-3^{\frac{1}{2}}=3^{\frac{1}{2}}-1
Simplify. The value x=2-\sqrt{3} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\sqrt{3}+2
Equation x-1=\sqrt{2x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}