Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3xx+3x\left(-1\right)=5x-1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
3x^{2}+3x\left(-1\right)=5x-1
Multiply x and x to get x^{2}.
3x^{2}-3x=5x-1
Multiply 3 and -1 to get -3.
3x^{2}-3x-5x=-1
Subtract 5x from both sides.
3x^{2}-8x=-1
Combine -3x and -5x to get -8x.
3x^{2}-8x+1=0
Add 1 to both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -8 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3}}{2\times 3}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-8\right)±\sqrt{52}}{2\times 3}
Add 64 to -12.
x=\frac{-\left(-8\right)±2\sqrt{13}}{2\times 3}
Take the square root of 52.
x=\frac{8±2\sqrt{13}}{2\times 3}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{13}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{13}+8}{6}
Now solve the equation x=\frac{8±2\sqrt{13}}{6} when ± is plus. Add 8 to 2\sqrt{13}.
x=\frac{\sqrt{13}+4}{3}
Divide 8+2\sqrt{13} by 6.
x=\frac{8-2\sqrt{13}}{6}
Now solve the equation x=\frac{8±2\sqrt{13}}{6} when ± is minus. Subtract 2\sqrt{13} from 8.
x=\frac{4-\sqrt{13}}{3}
Divide 8-2\sqrt{13} by 6.
x=\frac{\sqrt{13}+4}{3} x=\frac{4-\sqrt{13}}{3}
The equation is now solved.
3xx+3x\left(-1\right)=5x-1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
3x^{2}+3x\left(-1\right)=5x-1
Multiply x and x to get x^{2}.
3x^{2}-3x=5x-1
Multiply 3 and -1 to get -3.
3x^{2}-3x-5x=-1
Subtract 5x from both sides.
3x^{2}-8x=-1
Combine -3x and -5x to get -8x.
\frac{3x^{2}-8x}{3}=-\frac{1}{3}
Divide both sides by 3.
x^{2}-\frac{8}{3}x=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{1}{3}+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{13}{9}
Add -\frac{1}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=\frac{13}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{13}}{3} x-\frac{4}{3}=-\frac{\sqrt{13}}{3}
Simplify.
x=\frac{\sqrt{13}+4}{3} x=\frac{4-\sqrt{13}}{3}
Add \frac{4}{3} to both sides of the equation.