Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-\left(4+4x+x^{2}\right)=-1.7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
x-4-4x-x^{2}=-1.7
To find the opposite of 4+4x+x^{2}, find the opposite of each term.
-3x-4-x^{2}=-1.7
Combine x and -4x to get -3x.
-3x-4-x^{2}+1.7=0
Add 1.7 to both sides.
-3x-2.3-x^{2}=0
Add -4 and 1.7 to get -2.3.
-x^{2}-3x-2.3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-2.3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -2.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-2.3\right)}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-2.3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9-9.2}}{2\left(-1\right)}
Multiply 4 times -2.3.
x=\frac{-\left(-3\right)±\sqrt{-0.2}}{2\left(-1\right)}
Add 9 to -9.2.
x=\frac{-\left(-3\right)±\frac{\sqrt{5}i}{5}}{2\left(-1\right)}
Take the square root of -0.2.
x=\frac{3±\frac{\sqrt{5}i}{5}}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±\frac{\sqrt{5}i}{5}}{-2}
Multiply 2 times -1.
x=\frac{\frac{\sqrt{5}i}{5}+3}{-2}
Now solve the equation x=\frac{3±\frac{\sqrt{5}i}{5}}{-2} when ± is plus. Add 3 to \frac{i\sqrt{5}}{5}.
x=-\frac{\sqrt{5}i}{10}-\frac{3}{2}
Divide 3+\frac{i\sqrt{5}}{5} by -2.
x=\frac{-\frac{\sqrt{5}i}{5}+3}{-2}
Now solve the equation x=\frac{3±\frac{\sqrt{5}i}{5}}{-2} when ± is minus. Subtract \frac{i\sqrt{5}}{5} from 3.
x=\frac{\sqrt{5}i}{10}-\frac{3}{2}
Divide 3-\frac{i\sqrt{5}}{5} by -2.
x=-\frac{\sqrt{5}i}{10}-\frac{3}{2} x=\frac{\sqrt{5}i}{10}-\frac{3}{2}
The equation is now solved.
x-\left(4+4x+x^{2}\right)=-1.7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
x-4-4x-x^{2}=-1.7
To find the opposite of 4+4x+x^{2}, find the opposite of each term.
-3x-4-x^{2}=-1.7
Combine x and -4x to get -3x.
-3x-x^{2}=-1.7+4
Add 4 to both sides.
-3x-x^{2}=2.3
Add -1.7 and 4 to get 2.3.
-x^{2}-3x=2.3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-3x}{-1}=\frac{2.3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{2.3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+3x=\frac{2.3}{-1}
Divide -3 by -1.
x^{2}+3x=-2.3
Divide 2.3 by -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-2.3+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-2.3+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{1}{20}
Add -2.3 to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=-\frac{1}{20}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{1}{20}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{5}i}{10} x+\frac{3}{2}=-\frac{\sqrt{5}i}{10}
Simplify.
x=\frac{\sqrt{5}i}{10}-\frac{3}{2} x=-\frac{\sqrt{5}i}{10}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.