Solve for x
x=25
Graph
Share
Copied to clipboard
-\sqrt{x}=20-x
Subtract x from both sides of the equation.
\left(-\sqrt{x}\right)^{2}=\left(20-x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{x}\right)^{2}=\left(20-x\right)^{2}
Expand \left(-\sqrt{x}\right)^{2}.
1\left(\sqrt{x}\right)^{2}=\left(20-x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1x=\left(20-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
1x=400-40x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(20-x\right)^{2}.
x=x^{2}-40x+400
Reorder the terms.
x-x^{2}=-40x+400
Subtract x^{2} from both sides.
x-x^{2}+40x=400
Add 40x to both sides.
41x-x^{2}=400
Combine x and 40x to get 41x.
41x-x^{2}-400=0
Subtract 400 from both sides.
-x^{2}+41x-400=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=41 ab=-\left(-400\right)=400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-400. To find a and b, set up a system to be solved.
1,400 2,200 4,100 5,80 8,50 10,40 16,25 20,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 400.
1+400=401 2+200=202 4+100=104 5+80=85 8+50=58 10+40=50 16+25=41 20+20=40
Calculate the sum for each pair.
a=25 b=16
The solution is the pair that gives sum 41.
\left(-x^{2}+25x\right)+\left(16x-400\right)
Rewrite -x^{2}+41x-400 as \left(-x^{2}+25x\right)+\left(16x-400\right).
-x\left(x-25\right)+16\left(x-25\right)
Factor out -x in the first and 16 in the second group.
\left(x-25\right)\left(-x+16\right)
Factor out common term x-25 by using distributive property.
x=25 x=16
To find equation solutions, solve x-25=0 and -x+16=0.
25-\sqrt{25}=20
Substitute 25 for x in the equation x-\sqrt{x}=20.
20=20
Simplify. The value x=25 satisfies the equation.
16-\sqrt{16}=20
Substitute 16 for x in the equation x-\sqrt{x}=20.
12=20
Simplify. The value x=16 does not satisfy the equation.
x=25
Equation -\sqrt{x}=20-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}