Solve for x
x=3
Graph
Share
Copied to clipboard
-\sqrt{4-x}=2-x
Subtract x from both sides of the equation.
\left(-\sqrt{4-x}\right)^{2}=\left(2-x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{4-x}\right)^{2}=\left(2-x\right)^{2}
Expand \left(-\sqrt{4-x}\right)^{2}.
1\left(\sqrt{4-x}\right)^{2}=\left(2-x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(4-x\right)=\left(2-x\right)^{2}
Calculate \sqrt{4-x} to the power of 2 and get 4-x.
4-x=\left(2-x\right)^{2}
Use the distributive property to multiply 1 by 4-x.
4-x=4-4x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-x-4=-4x+x^{2}
Subtract 4 from both sides.
-x=-4x+x^{2}
Subtract 4 from 4 to get 0.
-x+4x=x^{2}
Add 4x to both sides.
3x=x^{2}
Combine -x and 4x to get 3x.
3x-x^{2}=0
Subtract x^{2} from both sides.
x\left(3-x\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and 3-x=0.
0-\sqrt{4-0}=2
Substitute 0 for x in the equation x-\sqrt{4-x}=2.
-2=2
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
3-\sqrt{4-3}=2
Substitute 3 for x in the equation x-\sqrt{4-x}=2.
2=2
Simplify. The value x=3 satisfies the equation.
x=3
Equation -\sqrt{4-x}=2-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}