Solve for x
x=4
Graph
Share
Copied to clipboard
-\sqrt{2x+1}=1-x
Subtract x from both sides of the equation.
\left(-\sqrt{2x+1}\right)^{2}=\left(1-x\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{2x+1}\right)^{2}=\left(1-x\right)^{2}
Expand \left(-\sqrt{2x+1}\right)^{2}.
1\left(\sqrt{2x+1}\right)^{2}=\left(1-x\right)^{2}
Calculate -1 to the power of 2 and get 1.
1\left(2x+1\right)=\left(1-x\right)^{2}
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
2x+1=\left(1-x\right)^{2}
Use the distributive property to multiply 1 by 2x+1.
2x+1=1-2x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
2x+1-1=-2x+x^{2}
Subtract 1 from both sides.
2x=-2x+x^{2}
Subtract 1 from 1 to get 0.
2x+2x=x^{2}
Add 2x to both sides.
4x=x^{2}
Combine 2x and 2x to get 4x.
4x-x^{2}=0
Subtract x^{2} from both sides.
x\left(4-x\right)=0
Factor out x.
x=0 x=4
To find equation solutions, solve x=0 and 4-x=0.
0-\sqrt{2\times 0+1}=1
Substitute 0 for x in the equation x-\sqrt{2x+1}=1.
-1=1
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
4-\sqrt{2\times 4+1}=1
Substitute 4 for x in the equation x-\sqrt{2x+1}=1.
1=1
Simplify. The value x=4 satisfies the equation.
x=4
Equation -\sqrt{2x+1}=1-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}