x(15-x(2x+5)(x-3)+x(-15-7x(x-4)7x(x-4
Evaluate
x\left(-49\left(x-4\right)^{2}x^{3}-2x^{3}+x^{2}+15\right)
Expand
15x+x^{3}-786x^{4}+392x^{5}-49x^{6}
Graph
Share
Copied to clipboard
x\left(15-x\left(2x+5\right)\left(x-3\right)+x\left(-15-7x^{2}\left(x-4\right)\times 7\left(x-4\right)\right)\right)
Multiply x and x to get x^{2}.
x\left(15-x\left(2x+5\right)\left(x-3\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
x\left(15-\left(2x^{2}+5x\right)\left(x-3\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Use the distributive property to multiply x by 2x+5.
x\left(15-\left(2x^{3}-6x^{2}+5x^{2}-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Apply the distributive property by multiplying each term of 2x^{2}+5x by each term of x-3.
x\left(15-\left(2x^{3}-x^{2}-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Combine -6x^{2} and 5x^{2} to get -x^{2}.
x\left(15-2x^{3}-\left(-x^{2}\right)-\left(-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
To find the opposite of 2x^{3}-x^{2}-15x, find the opposite of each term.
x\left(15-2x^{3}+x^{2}-\left(-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
The opposite of -x^{2} is x^{2}.
x\left(15-2x^{3}+x^{2}+15x+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
The opposite of -15x is 15x.
x\left(15-2x^{3}+x^{2}+15x+x\left(-15-7x^{2}\left(x^{2}-8x+16\right)\times 7\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x\left(15-2x^{3}+x^{2}+15x+x\left(-15-49x^{2}\left(x^{2}-8x+16\right)\right)\right)
Multiply 7 and 7 to get 49.
15x-2x^{4}+x^{3}+15x^{2}+\left(-15-49x^{2}\left(x^{2}-8x+16\right)\right)x^{2}
Use the distributive property to multiply x by 15-2x^{3}+x^{2}+15x+x\left(-15-49x^{2}\left(x^{2}-8x+16\right)\right).
15x-2x^{4}+x^{3}+15x^{2}+\left(-15-49x^{4}+392x^{3}-784x^{2}\right)x^{2}
Use the distributive property to multiply -49x^{2} by x^{2}-8x+16.
15x-2x^{4}+x^{3}+15x^{2}-15x^{2}-49x^{6}+392x^{5}-784x^{4}
Use the distributive property to multiply -15-49x^{4}+392x^{3}-784x^{2} by x^{2}.
15x-2x^{4}+x^{3}-49x^{6}+392x^{5}-784x^{4}
Combine 15x^{2} and -15x^{2} to get 0.
15x-786x^{4}+x^{3}-49x^{6}+392x^{5}
Combine -2x^{4} and -784x^{4} to get -786x^{4}.
x\left(15-x\left(2x+5\right)\left(x-3\right)+x\left(-15-7x^{2}\left(x-4\right)\times 7\left(x-4\right)\right)\right)
Multiply x and x to get x^{2}.
x\left(15-x\left(2x+5\right)\left(x-3\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
x\left(15-\left(2x^{2}+5x\right)\left(x-3\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Use the distributive property to multiply x by 2x+5.
x\left(15-\left(2x^{3}-6x^{2}+5x^{2}-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Apply the distributive property by multiplying each term of 2x^{2}+5x by each term of x-3.
x\left(15-\left(2x^{3}-x^{2}-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
Combine -6x^{2} and 5x^{2} to get -x^{2}.
x\left(15-2x^{3}-\left(-x^{2}\right)-\left(-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
To find the opposite of 2x^{3}-x^{2}-15x, find the opposite of each term.
x\left(15-2x^{3}+x^{2}-\left(-15x\right)+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
The opposite of -x^{2} is x^{2}.
x\left(15-2x^{3}+x^{2}+15x+x\left(-15-7x^{2}\left(x-4\right)^{2}\times 7\right)\right)
The opposite of -15x is 15x.
x\left(15-2x^{3}+x^{2}+15x+x\left(-15-7x^{2}\left(x^{2}-8x+16\right)\times 7\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x\left(15-2x^{3}+x^{2}+15x+x\left(-15-49x^{2}\left(x^{2}-8x+16\right)\right)\right)
Multiply 7 and 7 to get 49.
15x-2x^{4}+x^{3}+15x^{2}+\left(-15-49x^{2}\left(x^{2}-8x+16\right)\right)x^{2}
Use the distributive property to multiply x by 15-2x^{3}+x^{2}+15x+x\left(-15-49x^{2}\left(x^{2}-8x+16\right)\right).
15x-2x^{4}+x^{3}+15x^{2}+\left(-15-49x^{4}+392x^{3}-784x^{2}\right)x^{2}
Use the distributive property to multiply -49x^{2} by x^{2}-8x+16.
15x-2x^{4}+x^{3}+15x^{2}-15x^{2}-49x^{6}+392x^{5}-784x^{4}
Use the distributive property to multiply -15-49x^{4}+392x^{3}-784x^{2} by x^{2}.
15x-2x^{4}+x^{3}-49x^{6}+392x^{5}-784x^{4}
Combine 15x^{2} and -15x^{2} to get 0.
15x-786x^{4}+x^{3}-49x^{6}+392x^{5}
Combine -2x^{4} and -784x^{4} to get -786x^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}