Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-4x-x^{2}=\left(x-1\right)^{3}+2\left(x-2\right)-2x
Use the distributive property to multiply x by x^{2}-4.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-1+2\left(x-2\right)-2x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-1+2x-4-2x
Use the distributive property to multiply 2 by x-2.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+5x-1-4-2x
Combine 3x and 2x to get 5x.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+5x-5-2x
Subtract 4 from -1 to get -5.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-5
Combine 5x and -2x to get 3x.
x^{3}-4x-x^{2}-x^{3}=-3x^{2}+3x-5
Subtract x^{3} from both sides.
-4x-x^{2}=-3x^{2}+3x-5
Combine x^{3} and -x^{3} to get 0.
-4x-x^{2}+3x^{2}=3x-5
Add 3x^{2} to both sides.
-4x+2x^{2}=3x-5
Combine -x^{2} and 3x^{2} to get 2x^{2}.
-4x+2x^{2}-3x=-5
Subtract 3x from both sides.
-7x+2x^{2}=-5
Combine -4x and -3x to get -7x.
-7x+2x^{2}+5=0
Add 5 to both sides.
2x^{2}-7x+5=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=2\times 5=10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-10 -2,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 10.
-1-10=-11 -2-5=-7
Calculate the sum for each pair.
a=-5 b=-2
The solution is the pair that gives sum -7.
\left(2x^{2}-5x\right)+\left(-2x+5\right)
Rewrite 2x^{2}-7x+5 as \left(2x^{2}-5x\right)+\left(-2x+5\right).
x\left(2x-5\right)-\left(2x-5\right)
Factor out x in the first and -1 in the second group.
\left(2x-5\right)\left(x-1\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=1
To find equation solutions, solve 2x-5=0 and x-1=0.
x^{3}-4x-x^{2}=\left(x-1\right)^{3}+2\left(x-2\right)-2x
Use the distributive property to multiply x by x^{2}-4.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-1+2\left(x-2\right)-2x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-1+2x-4-2x
Use the distributive property to multiply 2 by x-2.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+5x-1-4-2x
Combine 3x and 2x to get 5x.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+5x-5-2x
Subtract 4 from -1 to get -5.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-5
Combine 5x and -2x to get 3x.
x^{3}-4x-x^{2}-x^{3}=-3x^{2}+3x-5
Subtract x^{3} from both sides.
-4x-x^{2}=-3x^{2}+3x-5
Combine x^{3} and -x^{3} to get 0.
-4x-x^{2}+3x^{2}=3x-5
Add 3x^{2} to both sides.
-4x+2x^{2}=3x-5
Combine -x^{2} and 3x^{2} to get 2x^{2}.
-4x+2x^{2}-3x=-5
Subtract 3x from both sides.
-7x+2x^{2}=-5
Combine -4x and -3x to get -7x.
-7x+2x^{2}+5=0
Add 5 to both sides.
2x^{2}-7x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 5}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-\left(-7\right)±\sqrt{9}}{2\times 2}
Add 49 to -40.
x=\frac{-\left(-7\right)±3}{2\times 2}
Take the square root of 9.
x=\frac{7±3}{2\times 2}
The opposite of -7 is 7.
x=\frac{7±3}{4}
Multiply 2 times 2.
x=\frac{10}{4}
Now solve the equation x=\frac{7±3}{4} when ± is plus. Add 7 to 3.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x=\frac{4}{4}
Now solve the equation x=\frac{7±3}{4} when ± is minus. Subtract 3 from 7.
x=1
Divide 4 by 4.
x=\frac{5}{2} x=1
The equation is now solved.
x^{3}-4x-x^{2}=\left(x-1\right)^{3}+2\left(x-2\right)-2x
Use the distributive property to multiply x by x^{2}-4.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-1+2\left(x-2\right)-2x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-1+2x-4-2x
Use the distributive property to multiply 2 by x-2.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+5x-1-4-2x
Combine 3x and 2x to get 5x.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+5x-5-2x
Subtract 4 from -1 to get -5.
x^{3}-4x-x^{2}=x^{3}-3x^{2}+3x-5
Combine 5x and -2x to get 3x.
x^{3}-4x-x^{2}-x^{3}=-3x^{2}+3x-5
Subtract x^{3} from both sides.
-4x-x^{2}=-3x^{2}+3x-5
Combine x^{3} and -x^{3} to get 0.
-4x-x^{2}+3x^{2}=3x-5
Add 3x^{2} to both sides.
-4x+2x^{2}=3x-5
Combine -x^{2} and 3x^{2} to get 2x^{2}.
-4x+2x^{2}-3x=-5
Subtract 3x from both sides.
-7x+2x^{2}=-5
Combine -4x and -3x to get -7x.
2x^{2}-7x=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-7x}{2}=-\frac{5}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Add -\frac{5}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{3}{4} x-\frac{7}{4}=-\frac{3}{4}
Simplify.
x=\frac{5}{2} x=1
Add \frac{7}{4} to both sides of the equation.