Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-25000=150x-x^{2}
Subtract 25000 from both sides.
x-25000-150x=-x^{2}
Subtract 150x from both sides.
-149x-25000=-x^{2}
Combine x and -150x to get -149x.
-149x-25000+x^{2}=0
Add x^{2} to both sides.
x^{2}-149x-25000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-149\right)±\sqrt{\left(-149\right)^{2}-4\left(-25000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -149 for b, and -25000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-149\right)±\sqrt{22201-4\left(-25000\right)}}{2}
Square -149.
x=\frac{-\left(-149\right)±\sqrt{22201+100000}}{2}
Multiply -4 times -25000.
x=\frac{-\left(-149\right)±\sqrt{122201}}{2}
Add 22201 to 100000.
x=\frac{149±\sqrt{122201}}{2}
The opposite of -149 is 149.
x=\frac{\sqrt{122201}+149}{2}
Now solve the equation x=\frac{149±\sqrt{122201}}{2} when ± is plus. Add 149 to \sqrt{122201}.
x=\frac{149-\sqrt{122201}}{2}
Now solve the equation x=\frac{149±\sqrt{122201}}{2} when ± is minus. Subtract \sqrt{122201} from 149.
x=\frac{\sqrt{122201}+149}{2} x=\frac{149-\sqrt{122201}}{2}
The equation is now solved.
x-150x=25000-x^{2}
Subtract 150x from both sides.
-149x=25000-x^{2}
Combine x and -150x to get -149x.
-149x+x^{2}=25000
Add x^{2} to both sides.
x^{2}-149x=25000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-149x+\left(-\frac{149}{2}\right)^{2}=25000+\left(-\frac{149}{2}\right)^{2}
Divide -149, the coefficient of the x term, by 2 to get -\frac{149}{2}. Then add the square of -\frac{149}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-149x+\frac{22201}{4}=25000+\frac{22201}{4}
Square -\frac{149}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-149x+\frac{22201}{4}=\frac{122201}{4}
Add 25000 to \frac{22201}{4}.
\left(x-\frac{149}{2}\right)^{2}=\frac{122201}{4}
Factor x^{2}-149x+\frac{22201}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{149}{2}\right)^{2}}=\sqrt{\frac{122201}{4}}
Take the square root of both sides of the equation.
x-\frac{149}{2}=\frac{\sqrt{122201}}{2} x-\frac{149}{2}=-\frac{\sqrt{122201}}{2}
Simplify.
x=\frac{\sqrt{122201}+149}{2} x=\frac{149-\sqrt{122201}}{2}
Add \frac{149}{2} to both sides of the equation.