Solve for x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
x=2
Graph
Share
Copied to clipboard
x=2\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x=2x^{2}-12x+18
Use the distributive property to multiply 2 by x^{2}-6x+9.
x-2x^{2}=-12x+18
Subtract 2x^{2} from both sides.
x-2x^{2}+12x=18
Add 12x to both sides.
13x-2x^{2}=18
Combine x and 12x to get 13x.
13x-2x^{2}-18=0
Subtract 18 from both sides.
-2x^{2}+13x-18=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=-2\left(-18\right)=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=9 b=4
The solution is the pair that gives sum 13.
\left(-2x^{2}+9x\right)+\left(4x-18\right)
Rewrite -2x^{2}+13x-18 as \left(-2x^{2}+9x\right)+\left(4x-18\right).
-x\left(2x-9\right)+2\left(2x-9\right)
Factor out -x in the first and 2 in the second group.
\left(2x-9\right)\left(-x+2\right)
Factor out common term 2x-9 by using distributive property.
x=\frac{9}{2} x=2
To find equation solutions, solve 2x-9=0 and -x+2=0.
x=2\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x=2x^{2}-12x+18
Use the distributive property to multiply 2 by x^{2}-6x+9.
x-2x^{2}=-12x+18
Subtract 2x^{2} from both sides.
x-2x^{2}+12x=18
Add 12x to both sides.
13x-2x^{2}=18
Combine x and 12x to get 13x.
13x-2x^{2}-18=0
Subtract 18 from both sides.
-2x^{2}+13x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 13 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Square 13.
x=\frac{-13±\sqrt{169+8\left(-18\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-13±\sqrt{169-144}}{2\left(-2\right)}
Multiply 8 times -18.
x=\frac{-13±\sqrt{25}}{2\left(-2\right)}
Add 169 to -144.
x=\frac{-13±5}{2\left(-2\right)}
Take the square root of 25.
x=\frac{-13±5}{-4}
Multiply 2 times -2.
x=-\frac{8}{-4}
Now solve the equation x=\frac{-13±5}{-4} when ± is plus. Add -13 to 5.
x=2
Divide -8 by -4.
x=-\frac{18}{-4}
Now solve the equation x=\frac{-13±5}{-4} when ± is minus. Subtract 5 from -13.
x=\frac{9}{2}
Reduce the fraction \frac{-18}{-4} to lowest terms by extracting and canceling out 2.
x=2 x=\frac{9}{2}
The equation is now solved.
x=2\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x=2x^{2}-12x+18
Use the distributive property to multiply 2 by x^{2}-6x+9.
x-2x^{2}=-12x+18
Subtract 2x^{2} from both sides.
x-2x^{2}+12x=18
Add 12x to both sides.
13x-2x^{2}=18
Combine x and 12x to get 13x.
-2x^{2}+13x=18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+13x}{-2}=\frac{18}{-2}
Divide both sides by -2.
x^{2}+\frac{13}{-2}x=\frac{18}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{13}{2}x=\frac{18}{-2}
Divide 13 by -2.
x^{2}-\frac{13}{2}x=-9
Divide 18 by -2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-9+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-9+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{25}{16}
Add -9 to \frac{169}{16}.
\left(x-\frac{13}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{5}{4} x-\frac{13}{4}=-\frac{5}{4}
Simplify.
x=\frac{9}{2} x=2
Add \frac{13}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}