Solve for x
x=7-4\sqrt{3}\approx 0.07179677
Assign x
x≔7-4\sqrt{3}
Graph
Share
Copied to clipboard
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{\left(1+1\sqrt{3}\right)\left(1-\sqrt{3}\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}-1}{1+1\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(1\sqrt{3}\right)^{2}}\right)^{2}
Consider \left(1+1\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{1-\left(1\sqrt{3}\right)^{2}}\right)^{2}
Calculate 1 to the power of 2 and get 1.
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{1-1^{2}\left(\sqrt{3}\right)^{2}}\right)^{2}
Expand \left(1\sqrt{3}\right)^{2}.
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{1-\left(\sqrt{3}\right)^{2}}\right)^{2}
Calculate 1 to the power of 2 and get 1.
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{1-3}\right)^{2}
The square of \sqrt{3} is 3.
x=\left(\frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{-2}\right)^{2}
Subtract 3 from 1 to get -2.
x=\frac{\left(\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)\right)^{2}}{\left(-2\right)^{2}}
To raise \frac{\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)}{-2} to a power, raise both numerator and denominator to the power and then divide.
x=\frac{\left(\sqrt{3}-1\right)^{2}\left(1-\sqrt{3}\right)^{2}}{\left(-2\right)^{2}}
Expand \left(\left(\sqrt{3}-1\right)\left(1-\sqrt{3}\right)\right)^{2}.
x=\frac{\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)\left(1-\sqrt{3}\right)^{2}}{\left(-2\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
x=\frac{\left(3-2\sqrt{3}+1\right)\left(1-\sqrt{3}\right)^{2}}{\left(-2\right)^{2}}
The square of \sqrt{3} is 3.
x=\frac{\left(4-2\sqrt{3}\right)\left(1-\sqrt{3}\right)^{2}}{\left(-2\right)^{2}}
Add 3 and 1 to get 4.
x=\frac{\left(4-2\sqrt{3}\right)\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{\left(-2\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
x=\frac{\left(4-2\sqrt{3}\right)\left(1-2\sqrt{3}+3\right)}{\left(-2\right)^{2}}
The square of \sqrt{3} is 3.
x=\frac{\left(4-2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}{\left(-2\right)^{2}}
Add 1 and 3 to get 4.
x=\frac{\left(4-2\sqrt{3}\right)^{2}}{\left(-2\right)^{2}}
Multiply 4-2\sqrt{3} and 4-2\sqrt{3} to get \left(4-2\sqrt{3}\right)^{2}.
x=\frac{16-16\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{\left(-2\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-2\sqrt{3}\right)^{2}.
x=\frac{16-16\sqrt{3}+4\times 3}{\left(-2\right)^{2}}
The square of \sqrt{3} is 3.
x=\frac{16-16\sqrt{3}+12}{\left(-2\right)^{2}}
Multiply 4 and 3 to get 12.
x=\frac{28-16\sqrt{3}}{\left(-2\right)^{2}}
Add 16 and 12 to get 28.
x=\frac{28-16\sqrt{3}}{4}
Calculate -2 to the power of 2 and get 4.
x=7-4\sqrt{3}
Divide each term of 28-16\sqrt{3} by 4 to get 7-4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}