Solve for y
y=\frac{3x+1}{2\left(3x-1\right)}
x\neq \frac{1}{3}
Solve for x
x=\frac{2y+1}{3\left(2y-1\right)}
y\neq \frac{1}{2}
Graph
Share
Copied to clipboard
x\times 3\left(2y-1\right)=2y+1
Variable y cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 3\left(2y-1\right).
6xy-x\times 3=2y+1
Use the distributive property to multiply x\times 3 by 2y-1.
6xy-3x=2y+1
Multiply -1 and 3 to get -3.
6xy-3x-2y=1
Subtract 2y from both sides.
6xy-2y=1+3x
Add 3x to both sides.
\left(6x-2\right)y=1+3x
Combine all terms containing y.
\left(6x-2\right)y=3x+1
The equation is in standard form.
\frac{\left(6x-2\right)y}{6x-2}=\frac{3x+1}{6x-2}
Divide both sides by 6x-2.
y=\frac{3x+1}{6x-2}
Dividing by 6x-2 undoes the multiplication by 6x-2.
y=\frac{3x+1}{2\left(3x-1\right)}
Divide 3x+1 by 6x-2.
y=\frac{3x+1}{2\left(3x-1\right)}\text{, }y\neq \frac{1}{2}
Variable y cannot be equal to \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}