Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x+3=x^{2}+6x+961
Combine x and 6x to get 7x.
7x+3-x^{2}=6x+961
Subtract x^{2} from both sides.
7x+3-x^{2}-6x=961
Subtract 6x from both sides.
x+3-x^{2}=961
Combine 7x and -6x to get x.
x+3-x^{2}-961=0
Subtract 961 from both sides.
x-958-x^{2}=0
Subtract 961 from 3 to get -958.
-x^{2}+x-958=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\left(-958\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and -958 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\left(-958\right)}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\left(-958\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1-3832}}{2\left(-1\right)}
Multiply 4 times -958.
x=\frac{-1±\sqrt{-3831}}{2\left(-1\right)}
Add 1 to -3832.
x=\frac{-1±\sqrt{3831}i}{2\left(-1\right)}
Take the square root of -3831.
x=\frac{-1±\sqrt{3831}i}{-2}
Multiply 2 times -1.
x=\frac{-1+\sqrt{3831}i}{-2}
Now solve the equation x=\frac{-1±\sqrt{3831}i}{-2} when ± is plus. Add -1 to i\sqrt{3831}.
x=\frac{-\sqrt{3831}i+1}{2}
Divide -1+i\sqrt{3831} by -2.
x=\frac{-\sqrt{3831}i-1}{-2}
Now solve the equation x=\frac{-1±\sqrt{3831}i}{-2} when ± is minus. Subtract i\sqrt{3831} from -1.
x=\frac{1+\sqrt{3831}i}{2}
Divide -1-i\sqrt{3831} by -2.
x=\frac{-\sqrt{3831}i+1}{2} x=\frac{1+\sqrt{3831}i}{2}
The equation is now solved.
7x+3=x^{2}+6x+961
Combine x and 6x to get 7x.
7x+3-x^{2}=6x+961
Subtract x^{2} from both sides.
7x+3-x^{2}-6x=961
Subtract 6x from both sides.
x+3-x^{2}=961
Combine 7x and -6x to get x.
x-x^{2}=961-3
Subtract 3 from both sides.
x-x^{2}=958
Subtract 3 from 961 to get 958.
-x^{2}+x=958
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=\frac{958}{-1}
Divide both sides by -1.
x^{2}+\frac{1}{-1}x=\frac{958}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-x=\frac{958}{-1}
Divide 1 by -1.
x^{2}-x=-958
Divide 958 by -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-958+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-958+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{3831}{4}
Add -958 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{3831}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3831}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{3831}i}{2} x-\frac{1}{2}=-\frac{\sqrt{3831}i}{2}
Simplify.
x=\frac{1+\sqrt{3831}i}{2} x=\frac{-\sqrt{3831}i+1}{2}
Add \frac{1}{2} to both sides of the equation.