Evaluate
16+3x-2x^{2}
Expand
16+3x-2x^{2}
Graph
Share
Copied to clipboard
x+4+2\left(x+2\right)\left(-x-\left(-3\right)\right)
The opposite of -2 is 2.
x+4+2\left(x+2\right)\left(-x+3\right)
The opposite of -3 is 3.
x+4+\left(2x+4\right)\left(-x+3\right)
Use the distributive property to multiply 2 by x+2.
x+4+2x\left(-x\right)+6x+4\left(-x\right)+12
Apply the distributive property by multiplying each term of 2x+4 by each term of -x+3.
7x+4+2x\left(-x\right)+4\left(-x\right)+12
Combine x and 6x to get 7x.
7x+16+2x\left(-x\right)+4\left(-x\right)
Add 4 and 12 to get 16.
7x+16+2x^{2}\left(-1\right)+4\left(-1\right)x
Multiply x and x to get x^{2}.
7x+16-2x^{2}+4\left(-1\right)x
Multiply 2 and -1 to get -2.
7x+16-2x^{2}-4x
Multiply 4 and -1 to get -4.
3x+16-2x^{2}
Combine 7x and -4x to get 3x.
x+4+2\left(x+2\right)\left(-x-\left(-3\right)\right)
The opposite of -2 is 2.
x+4+2\left(x+2\right)\left(-x+3\right)
The opposite of -3 is 3.
x+4+\left(2x+4\right)\left(-x+3\right)
Use the distributive property to multiply 2 by x+2.
x+4+2x\left(-x\right)+6x+4\left(-x\right)+12
Apply the distributive property by multiplying each term of 2x+4 by each term of -x+3.
7x+4+2x\left(-x\right)+4\left(-x\right)+12
Combine x and 6x to get 7x.
7x+16+2x\left(-x\right)+4\left(-x\right)
Add 4 and 12 to get 16.
7x+16+2x^{2}\left(-1\right)+4\left(-1\right)x
Multiply x and x to get x^{2}.
7x+16-2x^{2}+4\left(-1\right)x
Multiply 2 and -1 to get -2.
7x+16-2x^{2}-4x
Multiply 4 and -1 to get -4.
3x+16-2x^{2}
Combine 7x and -4x to get 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}