Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

xx+x\times 4+6=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+x\times 4+6=0
Multiply x and x to get x^{2}.
x^{2}+4x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 6}}{2}
Square 4.
x=\frac{-4±\sqrt{16-24}}{2}
Multiply -4 times 6.
x=\frac{-4±\sqrt{-8}}{2}
Add 16 to -24.
x=\frac{-4±2\sqrt{2}i}{2}
Take the square root of -8.
x=\frac{-4+2\sqrt{2}i}{2}
Now solve the equation x=\frac{-4±2\sqrt{2}i}{2} when ± is plus. Add -4 to 2i\sqrt{2}.
x=-2+\sqrt{2}i
Divide -4+2i\sqrt{2} by 2.
x=\frac{-2\sqrt{2}i-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{2}i}{2} when ± is minus. Subtract 2i\sqrt{2} from -4.
x=-\sqrt{2}i-2
Divide -4-2i\sqrt{2} by 2.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
The equation is now solved.
xx+x\times 4+6=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}+x\times 4+6=0
Multiply x and x to get x^{2}.
x^{2}+x\times 4=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x^{2}+4x=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+4x+2^{2}=-6+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-6+4
Square 2.
x^{2}+4x+4=-2
Add -6 to 4.
\left(x+2\right)^{2}=-2
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x+2=\sqrt{2}i x+2=-\sqrt{2}i
Simplify.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
Subtract 2 from both sides of the equation.