Solve for x
x=-\frac{2\left(y-15\right)}{\pi +1}
Solve for y
y=-\frac{\pi x}{2}-\frac{x}{2}+15
Graph
Share
Copied to clipboard
2x+4y+2\pi x=60
Multiply both sides of the equation by 2.
2x+2\pi x=60-4y
Subtract 4y from both sides.
\left(2+2\pi \right)x=60-4y
Combine all terms containing x.
\left(2\pi +2\right)x=60-4y
The equation is in standard form.
\frac{\left(2\pi +2\right)x}{2\pi +2}=\frac{60-4y}{2\pi +2}
Divide both sides by 2+2\pi .
x=\frac{60-4y}{2\pi +2}
Dividing by 2+2\pi undoes the multiplication by 2+2\pi .
x=\frac{2\left(15-y\right)}{\pi +1}
Divide 60-4y by 2+2\pi .
2x+4y+2\pi x=60
Multiply both sides of the equation by 2.
4y+2\pi x=60-2x
Subtract 2x from both sides.
4y=60-2x-2\pi x
Subtract 2\pi x from both sides.
\frac{4y}{4}=\frac{60-2x-2\pi x}{4}
Divide both sides by 4.
y=\frac{60-2x-2\pi x}{4}
Dividing by 4 undoes the multiplication by 4.
y=-\frac{\pi x}{2}-\frac{x}{2}+15
Divide 60-2x-2\pi x by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}