Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x+19+150\left(2+\frac{x}{5}\right)\left(\frac{1}{5}x-2\right)=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply both sides of the equation by 25, the least common multiple of 25,5.
25x+19+\left(300+150\times \frac{x}{5}\right)\left(\frac{1}{5}x-2\right)=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Use the distributive property to multiply 150 by 2+\frac{x}{5}.
25x+19+\left(300+30x\right)\left(\frac{1}{5}x-2\right)=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Cancel out 5, the greatest common factor in 150 and 5.
25x+19+300\times \frac{1}{5}x-600+30x\times \frac{1}{5}x-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Apply the distributive property by multiplying each term of 300+30x by each term of \frac{1}{5}x-2.
25x+19+300\times \frac{1}{5}x-600+30x^{2}\times \frac{1}{5}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply x and x to get x^{2}.
25x+19+\frac{300}{5}x-600+30x^{2}\times \frac{1}{5}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply 300 and \frac{1}{5} to get \frac{300}{5}.
25x+19+60x-600+30x^{2}\times \frac{1}{5}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Divide 300 by 5 to get 60.
25x+19+60x-600+\frac{30}{5}x^{2}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply 30 and \frac{1}{5} to get \frac{30}{5}.
25x+19+60x-600+6x^{2}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Divide 30 by 5 to get 6.
25x+19-600+6x^{2}=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Combine 60x and -60x to get 0.
25x-581+6x^{2}=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Subtract 600 from 19 to get -581.
25x-581+6x^{2}=100+50\times \frac{x}{5}-300-6+75\left(\frac{x}{5}-4\right)
Use the distributive property to multiply 50 by \frac{x}{5}-6.
25x-581+6x^{2}=100+10x-300-6+75\left(\frac{x}{5}-4\right)
Cancel out 5, the greatest common factor in 50 and 5.
25x-581+6x^{2}=-200+10x-6+75\left(\frac{x}{5}-4\right)
Subtract 300 from 100 to get -200.
25x-581+6x^{2}=-206+10x+75\left(\frac{x}{5}-4\right)
Subtract 6 from -200 to get -206.
25x-581+6x^{2}=-206+10x+75\times \frac{x}{5}-300
Use the distributive property to multiply 75 by \frac{x}{5}-4.
25x-581+6x^{2}=-206+10x+15x-300
Cancel out 5, the greatest common factor in 75 and 5.
25x-581+6x^{2}=-206+25x-300
Combine 10x and 15x to get 25x.
25x-581+6x^{2}=-506+25x
Subtract 300 from -206 to get -506.
25x-581+6x^{2}-25x=-506
Subtract 25x from both sides.
-581+6x^{2}=-506
Combine 25x and -25x to get 0.
6x^{2}=-506+581
Add 581 to both sides.
6x^{2}=75
Add -506 and 581 to get 75.
x^{2}=\frac{75}{6}
Divide both sides by 6.
x^{2}=\frac{25}{2}
Reduce the fraction \frac{75}{6} to lowest terms by extracting and canceling out 3.
x=\frac{5\sqrt{2}}{2} x=-\frac{5\sqrt{2}}{2}
Take the square root of both sides of the equation.
25x+19+150\left(2+\frac{x}{5}\right)\left(\frac{1}{5}x-2\right)=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply both sides of the equation by 25, the least common multiple of 25,5.
25x+19+\left(300+150\times \frac{x}{5}\right)\left(\frac{1}{5}x-2\right)=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Use the distributive property to multiply 150 by 2+\frac{x}{5}.
25x+19+\left(300+30x\right)\left(\frac{1}{5}x-2\right)=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Cancel out 5, the greatest common factor in 150 and 5.
25x+19+300\times \frac{1}{5}x-600+30x\times \frac{1}{5}x-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Apply the distributive property by multiplying each term of 300+30x by each term of \frac{1}{5}x-2.
25x+19+300\times \frac{1}{5}x-600+30x^{2}\times \frac{1}{5}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply x and x to get x^{2}.
25x+19+\frac{300}{5}x-600+30x^{2}\times \frac{1}{5}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply 300 and \frac{1}{5} to get \frac{300}{5}.
25x+19+60x-600+30x^{2}\times \frac{1}{5}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Divide 300 by 5 to get 60.
25x+19+60x-600+\frac{30}{5}x^{2}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Multiply 30 and \frac{1}{5} to get \frac{30}{5}.
25x+19+60x-600+6x^{2}-60x=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Divide 30 by 5 to get 6.
25x+19-600+6x^{2}=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Combine 60x and -60x to get 0.
25x-581+6x^{2}=100+50\left(\frac{x}{5}-6\right)-6+75\left(\frac{x}{5}-4\right)
Subtract 600 from 19 to get -581.
25x-581+6x^{2}=100+50\times \frac{x}{5}-300-6+75\left(\frac{x}{5}-4\right)
Use the distributive property to multiply 50 by \frac{x}{5}-6.
25x-581+6x^{2}=100+10x-300-6+75\left(\frac{x}{5}-4\right)
Cancel out 5, the greatest common factor in 50 and 5.
25x-581+6x^{2}=-200+10x-6+75\left(\frac{x}{5}-4\right)
Subtract 300 from 100 to get -200.
25x-581+6x^{2}=-206+10x+75\left(\frac{x}{5}-4\right)
Subtract 6 from -200 to get -206.
25x-581+6x^{2}=-206+10x+75\times \frac{x}{5}-300
Use the distributive property to multiply 75 by \frac{x}{5}-4.
25x-581+6x^{2}=-206+10x+15x-300
Cancel out 5, the greatest common factor in 75 and 5.
25x-581+6x^{2}=-206+25x-300
Combine 10x and 15x to get 25x.
25x-581+6x^{2}=-506+25x
Subtract 300 from -206 to get -506.
25x-581+6x^{2}-\left(-506\right)=25x
Subtract -506 from both sides.
25x-581+6x^{2}+506=25x
The opposite of -506 is 506.
25x-581+6x^{2}+506-25x=0
Subtract 25x from both sides.
25x-75+6x^{2}-25x=0
Add -581 and 506 to get -75.
-75+6x^{2}=0
Combine 25x and -25x to get 0.
6x^{2}-75=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-75\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-75\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-75\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{1800}}{2\times 6}
Multiply -24 times -75.
x=\frac{0±30\sqrt{2}}{2\times 6}
Take the square root of 1800.
x=\frac{0±30\sqrt{2}}{12}
Multiply 2 times 6.
x=\frac{5\sqrt{2}}{2}
Now solve the equation x=\frac{0±30\sqrt{2}}{12} when ± is plus.
x=-\frac{5\sqrt{2}}{2}
Now solve the equation x=\frac{0±30\sqrt{2}}{12} when ± is minus.
x=\frac{5\sqrt{2}}{2} x=-\frac{5\sqrt{2}}{2}
The equation is now solved.