Solve for x
x=-\frac{4\left(y-19\right)}{y-4}
y\neq 4
Solve for y
y=\frac{4\left(x+19\right)}{x+4}
x\neq -4
Graph
Share
Copied to clipboard
xy-4x-16=60-4y
Subtract 4y from both sides.
xy-4x=60-4y+16
Add 16 to both sides.
xy-4x=76-4y
Add 60 and 16 to get 76.
\left(y-4\right)x=76-4y
Combine all terms containing x.
\frac{\left(y-4\right)x}{y-4}=\frac{76-4y}{y-4}
Divide both sides by -4+y.
x=\frac{76-4y}{y-4}
Dividing by -4+y undoes the multiplication by -4+y.
x=\frac{4\left(19-y\right)}{y-4}
Divide 76-4y by -4+y.
xy+4y-16=60+4x
Add 4x to both sides.
xy+4y=60+4x+16
Add 16 to both sides.
xy+4y=76+4x
Add 60 and 16 to get 76.
\left(x+4\right)y=76+4x
Combine all terms containing y.
\left(x+4\right)y=4x+76
The equation is in standard form.
\frac{\left(x+4\right)y}{x+4}=\frac{4x+76}{x+4}
Divide both sides by x+4.
y=\frac{4x+76}{x+4}
Dividing by x+4 undoes the multiplication by x+4.
y=\frac{4\left(x+19\right)}{x+4}
Divide 76+4x by x+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}