Solve for x
x=\frac{x_{4}}{24}+\frac{11x_{m}}{48}
Solve for x_4
x_{4}=-\frac{11x_{m}}{2}+24x
Graph
Share
Copied to clipboard
x_{m}=\frac{48}{11}x-\frac{1}{2}x_{4}\times \frac{44}{121}
Multiply 4 and \frac{12}{11} to get \frac{48}{11}.
x_{m}=\frac{48}{11}x-\frac{1}{2}x_{4}\times \frac{4}{11}
Reduce the fraction \frac{44}{121} to lowest terms by extracting and canceling out 11.
x_{m}=\frac{48}{11}x-\frac{2}{11}x_{4}
Multiply \frac{1}{2} and \frac{4}{11} to get \frac{2}{11}.
\frac{48}{11}x-\frac{2}{11}x_{4}=x_{m}
Swap sides so that all variable terms are on the left hand side.
\frac{48}{11}x=x_{m}+\frac{2}{11}x_{4}
Add \frac{2}{11}x_{4} to both sides.
\frac{48}{11}x=\frac{2x_{4}}{11}+x_{m}
The equation is in standard form.
\frac{\frac{48}{11}x}{\frac{48}{11}}=\frac{\frac{2x_{4}}{11}+x_{m}}{\frac{48}{11}}
Divide both sides of the equation by \frac{48}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{2x_{4}}{11}+x_{m}}{\frac{48}{11}}
Dividing by \frac{48}{11} undoes the multiplication by \frac{48}{11}.
x=\frac{x_{4}}{24}+\frac{11x_{m}}{48}
Divide x_{m}+\frac{2x_{4}}{11} by \frac{48}{11} by multiplying x_{m}+\frac{2x_{4}}{11} by the reciprocal of \frac{48}{11}.
x_{m}=\frac{48}{11}x-\frac{1}{2}x_{4}\times \frac{44}{121}
Multiply 4 and \frac{12}{11} to get \frac{48}{11}.
x_{m}=\frac{48}{11}x-\frac{1}{2}x_{4}\times \frac{4}{11}
Reduce the fraction \frac{44}{121} to lowest terms by extracting and canceling out 11.
x_{m}=\frac{48}{11}x-\frac{2}{11}x_{4}
Multiply \frac{1}{2} and \frac{4}{11} to get \frac{2}{11}.
\frac{48}{11}x-\frac{2}{11}x_{4}=x_{m}
Swap sides so that all variable terms are on the left hand side.
-\frac{2}{11}x_{4}=x_{m}-\frac{48}{11}x
Subtract \frac{48}{11}x from both sides.
-\frac{2}{11}x_{4}=-\frac{48x}{11}+x_{m}
The equation is in standard form.
\frac{-\frac{2}{11}x_{4}}{-\frac{2}{11}}=\frac{-\frac{48x}{11}+x_{m}}{-\frac{2}{11}}
Divide both sides of the equation by -\frac{2}{11}, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{4}=\frac{-\frac{48x}{11}+x_{m}}{-\frac{2}{11}}
Dividing by -\frac{2}{11} undoes the multiplication by -\frac{2}{11}.
x_{4}=-\frac{11x_{m}}{2}+24x
Divide x_{m}-\frac{48x}{11} by -\frac{2}{11} by multiplying x_{m}-\frac{48x}{11} by the reciprocal of -\frac{2}{11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}