Solve for x_R
x_{R}=\frac{41}{48}\approx 0.854166667
Assign x_R
x_{R}≔\frac{41}{48}
Share
Copied to clipboard
x_{R}=\frac{59}{144}+\frac{64}{144}
Least common multiple of 144 and 9 is 144. Convert \frac{59}{144} and \frac{4}{9} to fractions with denominator 144.
x_{R}=\frac{59+64}{144}
Since \frac{59}{144} and \frac{64}{144} have the same denominator, add them by adding their numerators.
x_{R}=\frac{123}{144}
Add 59 and 64 to get 123.
x_{R}=\frac{41}{48}
Reduce the fraction \frac{123}{144} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}