Solve for x_0
x_{0}=-\frac{2x_{2}}{5}+1
Solve for x_2
x_{2}=\frac{5-5x_{0}}{2}
Share
Copied to clipboard
x_{2}=2.5-2.5x_{0}
Use the distributive property to multiply 2.5 by 1-x_{0}.
2.5-2.5x_{0}=x_{2}
Swap sides so that all variable terms are on the left hand side.
-2.5x_{0}=x_{2}-2.5
Subtract 2.5 from both sides.
\frac{-2.5x_{0}}{-2.5}=\frac{x_{2}-2.5}{-2.5}
Divide both sides of the equation by -2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{0}=\frac{x_{2}-2.5}{-2.5}
Dividing by -2.5 undoes the multiplication by -2.5.
x_{0}=-\frac{2x_{2}}{5}+1
Divide x_{2}-2.5 by -2.5 by multiplying x_{2}-2.5 by the reciprocal of -2.5.
x_{2}=2.5-2.5x_{0}
Use the distributive property to multiply 2.5 by 1-x_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}