Solve for I
I=\frac{5p_{2}x_{2}}{3}
p_{2}\neq 0\text{ and }p_{1}\neq 0
Solve for p_1
p_{1}\neq 0
\left(x_{2}=0\text{ and }I=0\text{ and }p_{2}\neq 0\right)\text{ or }\left(p_{2}=\frac{3I}{5x_{2}}\text{ and }x_{2}\neq 0\text{ and }I\neq 0\right)
Share
Copied to clipboard
x_{2}\times 10p_{1}p_{2}=5p_{1}\times 3p_{1}\times \frac{2I}{5p_{1}}
Multiply both sides of the equation by 10p_{1}p_{2}, the least common multiple of 2p_{2},5p_{1}.
x_{2}\times 10p_{1}p_{2}=5p_{1}^{2}\times 3\times \frac{2I}{5p_{1}}
Multiply p_{1} and p_{1} to get p_{1}^{2}.
x_{2}\times 10p_{1}p_{2}=15p_{1}^{2}\times \frac{2I}{5p_{1}}
Multiply 5 and 3 to get 15.
x_{2}\times 10p_{1}p_{2}=\frac{15\times 2I}{5p_{1}}p_{1}^{2}
Express 15\times \frac{2I}{5p_{1}} as a single fraction.
x_{2}\times 10p_{1}p_{2}=\frac{2\times 3I}{p_{1}}p_{1}^{2}
Cancel out 5 in both numerator and denominator.
x_{2}\times 10p_{1}p_{2}=\frac{6I}{p_{1}}p_{1}^{2}
Multiply 2 and 3 to get 6.
x_{2}\times 10p_{1}p_{2}=\frac{6Ip_{1}^{2}}{p_{1}}
Express \frac{6I}{p_{1}}p_{1}^{2} as a single fraction.
x_{2}\times 10p_{1}p_{2}=6Ip_{1}
Cancel out p_{1} in both numerator and denominator.
6Ip_{1}=x_{2}\times 10p_{1}p_{2}
Swap sides so that all variable terms are on the left hand side.
6p_{1}I=10p_{1}p_{2}x_{2}
The equation is in standard form.
\frac{6p_{1}I}{6p_{1}}=\frac{10p_{1}p_{2}x_{2}}{6p_{1}}
Divide both sides by 6p_{1}.
I=\frac{10p_{1}p_{2}x_{2}}{6p_{1}}
Dividing by 6p_{1} undoes the multiplication by 6p_{1}.
I=\frac{5p_{2}x_{2}}{3}
Divide 10x_{2}p_{1}p_{2} by 6p_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}