Solve for k
\left\{\begin{matrix}k=-\frac{2\pi \cos(2\pi x)}{x-x_{0}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{n_{1}}{2}+\frac{1}{4}\text{ and }x_{0}\neq x\\k\neq 0\text{, }&x_{0}=x\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{n_{1}}{2}+\frac{1}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
x_{0}k=2\pi \cos(2\pi x)+kx
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
x_{0}k-kx=2\pi \cos(2\pi x)
Subtract kx from both sides.
\left(x_{0}-x\right)k=2\pi \cos(2\pi x)
Combine all terms containing k.
\frac{\left(x_{0}-x\right)k}{x_{0}-x}=\frac{2\pi \cos(2\pi x)}{x_{0}-x}
Divide both sides by x_{0}-x.
k=\frac{2\pi \cos(2\pi x)}{x_{0}-x}
Dividing by x_{0}-x undoes the multiplication by x_{0}-x.
k=\frac{2\pi \cos(2\pi x)}{x_{0}-x}\text{, }k\neq 0
Variable k cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}