Solve for V (complex solution)
\left\{\begin{matrix}V=-\frac{V_{0}t+2x_{0}-2x}{t}\text{, }&t\neq 0\\V\in \mathrm{C}\text{, }&x=x_{0}\text{ and }t=0\end{matrix}\right.
Solve for V_0 (complex solution)
\left\{\begin{matrix}V_{0}=-\frac{Vt+2x_{0}-2x}{t}\text{, }&t\neq 0\\V_{0}\in \mathrm{C}\text{, }&x=x_{0}\text{ and }t=0\end{matrix}\right.
Solve for V
\left\{\begin{matrix}V=-\frac{V_{0}t+2x_{0}-2x}{t}\text{, }&t\neq 0\\V\in \mathrm{R}\text{, }&x=x_{0}\text{ and }t=0\end{matrix}\right.
Solve for V_0
\left\{\begin{matrix}V_{0}=-\frac{Vt+2x_{0}-2x}{t}\text{, }&t\neq 0\\V_{0}\in \mathrm{R}\text{, }&x=x_{0}\text{ and }t=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2x-2x_{0}=t\left(2V_{0}+V-V_{0}\right)
Multiply both sides of the equation by 2.
2x-2x_{0}=t\left(V_{0}+V\right)
Combine 2V_{0} and -V_{0} to get V_{0}.
2x-2x_{0}=tV_{0}+tV
Use the distributive property to multiply t by V_{0}+V.
tV_{0}+tV=2x-2x_{0}
Swap sides so that all variable terms are on the left hand side.
tV=2x-2x_{0}-tV_{0}
Subtract tV_{0} from both sides.
tV=2x-2x_{0}-V_{0}t
The equation is in standard form.
\frac{tV}{t}=\frac{2x-2x_{0}-V_{0}t}{t}
Divide both sides by t.
V=\frac{2x-2x_{0}-V_{0}t}{t}
Dividing by t undoes the multiplication by t.
2x-2x_{0}=t\left(2V_{0}+V-V_{0}\right)
Multiply both sides of the equation by 2.
2x-2x_{0}=t\left(V_{0}+V\right)
Combine 2V_{0} and -V_{0} to get V_{0}.
2x-2x_{0}=tV_{0}+tV
Use the distributive property to multiply t by V_{0}+V.
tV_{0}+tV=2x-2x_{0}
Swap sides so that all variable terms are on the left hand side.
tV_{0}=2x-2x_{0}-tV
Subtract tV from both sides.
tV_{0}=2x-2x_{0}-Vt
The equation is in standard form.
\frac{tV_{0}}{t}=\frac{2x-2x_{0}-Vt}{t}
Divide both sides by t.
V_{0}=\frac{2x-2x_{0}-Vt}{t}
Dividing by t undoes the multiplication by t.
2x-2x_{0}=t\left(2V_{0}+V-V_{0}\right)
Multiply both sides of the equation by 2.
2x-2x_{0}=t\left(V_{0}+V\right)
Combine 2V_{0} and -V_{0} to get V_{0}.
2x-2x_{0}=tV_{0}+tV
Use the distributive property to multiply t by V_{0}+V.
tV_{0}+tV=2x-2x_{0}
Swap sides so that all variable terms are on the left hand side.
tV=2x-2x_{0}-tV_{0}
Subtract tV_{0} from both sides.
tV=2x-2x_{0}-V_{0}t
The equation is in standard form.
\frac{tV}{t}=\frac{2x-2x_{0}-V_{0}t}{t}
Divide both sides by t.
V=\frac{2x-2x_{0}-V_{0}t}{t}
Dividing by t undoes the multiplication by t.
2x-2x_{0}=t\left(2V_{0}+V-V_{0}\right)
Multiply both sides of the equation by 2.
2x-2x_{0}=t\left(V_{0}+V\right)
Combine 2V_{0} and -V_{0} to get V_{0}.
2x-2x_{0}=tV_{0}+tV
Use the distributive property to multiply t by V_{0}+V.
tV_{0}+tV=2x-2x_{0}
Swap sides so that all variable terms are on the left hand side.
tV_{0}=2x-2x_{0}-tV
Subtract tV from both sides.
tV_{0}=2x-2x_{0}-Vt
The equation is in standard form.
\frac{tV_{0}}{t}=\frac{2x-2x_{0}-Vt}{t}
Divide both sides by t.
V_{0}=\frac{2x-2x_{0}-Vt}{t}
Dividing by t undoes the multiplication by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}