Solve for x (complex solution)
x=\frac{-\sqrt{15}i+1}{6}\approx 0.166666667-0.645497224i
x=\frac{1+\sqrt{15}i}{6}\approx 0.166666667+0.645497224i
Graph
Share
Copied to clipboard
3x-9x^{2}-4=0
Combine x and 2x to get 3x.
-9x^{2}+3x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
Square 3.
x=\frac{-3±\sqrt{9+36\left(-4\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-3±\sqrt{9-144}}{2\left(-9\right)}
Multiply 36 times -4.
x=\frac{-3±\sqrt{-135}}{2\left(-9\right)}
Add 9 to -144.
x=\frac{-3±3\sqrt{15}i}{2\left(-9\right)}
Take the square root of -135.
x=\frac{-3±3\sqrt{15}i}{-18}
Multiply 2 times -9.
x=\frac{-3+3\sqrt{15}i}{-18}
Now solve the equation x=\frac{-3±3\sqrt{15}i}{-18} when ± is plus. Add -3 to 3i\sqrt{15}.
x=\frac{-\sqrt{15}i+1}{6}
Divide -3+3i\sqrt{15} by -18.
x=\frac{-3\sqrt{15}i-3}{-18}
Now solve the equation x=\frac{-3±3\sqrt{15}i}{-18} when ± is minus. Subtract 3i\sqrt{15} from -3.
x=\frac{1+\sqrt{15}i}{6}
Divide -3-3i\sqrt{15} by -18.
x=\frac{-\sqrt{15}i+1}{6} x=\frac{1+\sqrt{15}i}{6}
The equation is now solved.
3x-9x^{2}-4=0
Combine x and 2x to get 3x.
3x-9x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
-9x^{2}+3x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+3x}{-9}=\frac{4}{-9}
Divide both sides by -9.
x^{2}+\frac{3}{-9}x=\frac{4}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{1}{3}x=\frac{4}{-9}
Reduce the fraction \frac{3}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x=-\frac{4}{9}
Divide 4 by -9.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-\frac{4}{9}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{4}{9}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{5}{12}
Add -\frac{4}{9} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=-\frac{5}{12}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{-\frac{5}{12}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{15}i}{6} x-\frac{1}{6}=-\frac{\sqrt{15}i}{6}
Simplify.
x=\frac{1+\sqrt{15}i}{6} x=\frac{-\sqrt{15}i+1}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}