Solve for x
x=10
Graph
Share
Copied to clipboard
\left(x-8\right)^{2}=\left(\sqrt{x-6}\right)^{2}
Square both sides of the equation.
x^{2}-16x+64=\left(\sqrt{x-6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
x^{2}-16x+64=x-6
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x^{2}-16x+64-x=-6
Subtract x from both sides.
x^{2}-17x+64=-6
Combine -16x and -x to get -17x.
x^{2}-17x+64+6=0
Add 6 to both sides.
x^{2}-17x+70=0
Add 64 and 6 to get 70.
a+b=-17 ab=70
To solve the equation, factor x^{2}-17x+70 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-70 -2,-35 -5,-14 -7,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 70.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
Calculate the sum for each pair.
a=-10 b=-7
The solution is the pair that gives sum -17.
\left(x-10\right)\left(x-7\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=7
To find equation solutions, solve x-10=0 and x-7=0.
10-8=\sqrt{10-6}
Substitute 10 for x in the equation x-8=\sqrt{x-6}.
2=2
Simplify. The value x=10 satisfies the equation.
7-8=\sqrt{7-6}
Substitute 7 for x in the equation x-8=\sqrt{x-6}.
-1=1
Simplify. The value x=7 does not satisfy the equation because the left and the right hand side have opposite signs.
x=10
Equation x-8=\sqrt{x-6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}