Solve for x
x=16
Graph
Share
Copied to clipboard
\left(x-8\right)^{2}=\left(\sqrt{4x}\right)^{2}
Square both sides of the equation.
x^{2}-16x+64=\left(\sqrt{4x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
x^{2}-16x+64=4x
Calculate \sqrt{4x} to the power of 2 and get 4x.
x^{2}-16x+64-4x=0
Subtract 4x from both sides.
x^{2}-20x+64=0
Combine -16x and -4x to get -20x.
a+b=-20 ab=64
To solve the equation, factor x^{2}-20x+64 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-64 -2,-32 -4,-16 -8,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Calculate the sum for each pair.
a=-16 b=-4
The solution is the pair that gives sum -20.
\left(x-16\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=16 x=4
To find equation solutions, solve x-16=0 and x-4=0.
16-8=\sqrt{4\times 16}
Substitute 16 for x in the equation x-8=\sqrt{4x}.
8=8
Simplify. The value x=16 satisfies the equation.
4-8=\sqrt{4\times 4}
Substitute 4 for x in the equation x-8=\sqrt{4x}.
-4=4
Simplify. The value x=4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=16
Equation x-8=\sqrt{4x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}