Solve for x (complex solution)
x=\frac{17+\sqrt{195}i}{2}\approx 8.5+6.982120022i
Graph
Share
Copied to clipboard
\left(x-7\right)^{2}=\left(\sqrt{3x-72}\right)^{2}
Square both sides of the equation.
x^{2}-14x+49=\left(\sqrt{3x-72}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x^{2}-14x+49=3x-72
Calculate \sqrt{3x-72} to the power of 2 and get 3x-72.
x^{2}-14x+49-3x=-72
Subtract 3x from both sides.
x^{2}-17x+49=-72
Combine -14x and -3x to get -17x.
x^{2}-17x+49+72=0
Add 72 to both sides.
x^{2}-17x+121=0
Add 49 and 72 to get 121.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 121}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -17 for b, and 121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 121}}{2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-484}}{2}
Multiply -4 times 121.
x=\frac{-\left(-17\right)±\sqrt{-195}}{2}
Add 289 to -484.
x=\frac{-\left(-17\right)±\sqrt{195}i}{2}
Take the square root of -195.
x=\frac{17±\sqrt{195}i}{2}
The opposite of -17 is 17.
x=\frac{17+\sqrt{195}i}{2}
Now solve the equation x=\frac{17±\sqrt{195}i}{2} when ± is plus. Add 17 to i\sqrt{195}.
x=\frac{-\sqrt{195}i+17}{2}
Now solve the equation x=\frac{17±\sqrt{195}i}{2} when ± is minus. Subtract i\sqrt{195} from 17.
x=\frac{17+\sqrt{195}i}{2} x=\frac{-\sqrt{195}i+17}{2}
The equation is now solved.
\frac{17+\sqrt{195}i}{2}-7=\sqrt{3\times \frac{17+\sqrt{195}i}{2}-72}
Substitute \frac{17+\sqrt{195}i}{2} for x in the equation x-7=\sqrt{3x-72}.
\frac{3}{2}+\frac{1}{2}i\times 195^{\frac{1}{2}}=\frac{3}{2}+\frac{1}{2}i\times 195^{\frac{1}{2}}
Simplify. The value x=\frac{17+\sqrt{195}i}{2} satisfies the equation.
\frac{-\sqrt{195}i+17}{2}-7=\sqrt{3\times \frac{-\sqrt{195}i+17}{2}-72}
Substitute \frac{-\sqrt{195}i+17}{2} for x in the equation x-7=\sqrt{3x-72}.
-\frac{1}{2}i\times 195^{\frac{1}{2}}+\frac{3}{2}=-\left(\frac{3}{2}-\frac{1}{2}i\times 195^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{195}i+17}{2} does not satisfy the equation.
x=\frac{17+\sqrt{195}i}{2}
Equation x-7=\sqrt{3x-72} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}