Solve for x
x=\frac{\sqrt{163}-13}{4}\approx -0.058213666
x=\frac{-\sqrt{163}-13}{4}\approx -6.441786334
Graph
Share
Copied to clipboard
x-8x\left(x+6\right)=5x+3
Multiply 4 and 2 to get 8.
x-8x\left(x+6\right)-5x=3
Subtract 5x from both sides.
x-8x\left(x+6\right)-5x-3=0
Subtract 3 from both sides.
x-8x^{2}-48x-5x-3=0
Use the distributive property to multiply -8x by x+6.
-47x-8x^{2}-5x-3=0
Combine x and -48x to get -47x.
-52x-8x^{2}-3=0
Combine -47x and -5x to get -52x.
-8x^{2}-52x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\left(-8\right)\left(-3\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -52 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\left(-8\right)\left(-3\right)}}{2\left(-8\right)}
Square -52.
x=\frac{-\left(-52\right)±\sqrt{2704+32\left(-3\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-52\right)±\sqrt{2704-96}}{2\left(-8\right)}
Multiply 32 times -3.
x=\frac{-\left(-52\right)±\sqrt{2608}}{2\left(-8\right)}
Add 2704 to -96.
x=\frac{-\left(-52\right)±4\sqrt{163}}{2\left(-8\right)}
Take the square root of 2608.
x=\frac{52±4\sqrt{163}}{2\left(-8\right)}
The opposite of -52 is 52.
x=\frac{52±4\sqrt{163}}{-16}
Multiply 2 times -8.
x=\frac{4\sqrt{163}+52}{-16}
Now solve the equation x=\frac{52±4\sqrt{163}}{-16} when ± is plus. Add 52 to 4\sqrt{163}.
x=\frac{-\sqrt{163}-13}{4}
Divide 52+4\sqrt{163} by -16.
x=\frac{52-4\sqrt{163}}{-16}
Now solve the equation x=\frac{52±4\sqrt{163}}{-16} when ± is minus. Subtract 4\sqrt{163} from 52.
x=\frac{\sqrt{163}-13}{4}
Divide 52-4\sqrt{163} by -16.
x=\frac{-\sqrt{163}-13}{4} x=\frac{\sqrt{163}-13}{4}
The equation is now solved.
x-8x\left(x+6\right)=5x+3
Multiply 4 and 2 to get 8.
x-8x\left(x+6\right)-5x=3
Subtract 5x from both sides.
x-8x^{2}-48x-5x=3
Use the distributive property to multiply -8x by x+6.
-47x-8x^{2}-5x=3
Combine x and -48x to get -47x.
-52x-8x^{2}=3
Combine -47x and -5x to get -52x.
-8x^{2}-52x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}-52x}{-8}=\frac{3}{-8}
Divide both sides by -8.
x^{2}+\left(-\frac{52}{-8}\right)x=\frac{3}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}+\frac{13}{2}x=\frac{3}{-8}
Reduce the fraction \frac{-52}{-8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{13}{2}x=-\frac{3}{8}
Divide 3 by -8.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=-\frac{3}{8}+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=-\frac{3}{8}+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{163}{16}
Add -\frac{3}{8} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{4}\right)^{2}=\frac{163}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{163}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{\sqrt{163}}{4} x+\frac{13}{4}=-\frac{\sqrt{163}}{4}
Simplify.
x=\frac{\sqrt{163}-13}{4} x=\frac{-\sqrt{163}-13}{4}
Subtract \frac{13}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}