Solve for x
x=6
Graph
Share
Copied to clipboard
\left(x-4\right)^{2}=\left(\sqrt{-5x+34}\right)^{2}
Square both sides of the equation.
x^{2}-8x+16=\left(\sqrt{-5x+34}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16=-5x+34
Calculate \sqrt{-5x+34} to the power of 2 and get -5x+34.
x^{2}-8x+16+5x=34
Add 5x to both sides.
x^{2}-3x+16=34
Combine -8x and 5x to get -3x.
x^{2}-3x+16-34=0
Subtract 34 from both sides.
x^{2}-3x-18=0
Subtract 34 from 16 to get -18.
a+b=-3 ab=-18
To solve the equation, factor x^{2}-3x-18 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-18 2,-9 3,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -18.
1-18=-17 2-9=-7 3-6=-3
Calculate the sum for each pair.
a=-6 b=3
The solution is the pair that gives sum -3.
\left(x-6\right)\left(x+3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=6 x=-3
To find equation solutions, solve x-6=0 and x+3=0.
6-4=\sqrt{-5\times 6+34}
Substitute 6 for x in the equation x-4=\sqrt{-5x+34}.
2=2
Simplify. The value x=6 satisfies the equation.
-3-4=\sqrt{-5\left(-3\right)+34}
Substitute -3 for x in the equation x-4=\sqrt{-5x+34}.
-7=7
Simplify. The value x=-3 does not satisfy the equation because the left and the right hand side have opposite signs.
x=6
Equation x-4=\sqrt{34-5x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}