Solve for x
x = \frac{\sqrt{13} + 7}{2} \approx 5.302775638
x = \frac{7 - \sqrt{13}}{2} \approx 1.697224362
Graph
Share
Copied to clipboard
\left(x-3\right)x+\left(x-3\right)\left(-4\right)=3
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
x^{2}-3x+\left(x-3\right)\left(-4\right)=3
Use the distributive property to multiply x-3 by x.
x^{2}-3x-4x+12=3
Use the distributive property to multiply x-3 by -4.
x^{2}-7x+12=3
Combine -3x and -4x to get -7x.
x^{2}-7x+12-3=0
Subtract 3 from both sides.
x^{2}-7x+9=0
Subtract 3 from 12 to get 9.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 9}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-36}}{2}
Multiply -4 times 9.
x=\frac{-\left(-7\right)±\sqrt{13}}{2}
Add 49 to -36.
x=\frac{7±\sqrt{13}}{2}
The opposite of -7 is 7.
x=\frac{\sqrt{13}+7}{2}
Now solve the equation x=\frac{7±\sqrt{13}}{2} when ± is plus. Add 7 to \sqrt{13}.
x=\frac{7-\sqrt{13}}{2}
Now solve the equation x=\frac{7±\sqrt{13}}{2} when ± is minus. Subtract \sqrt{13} from 7.
x=\frac{\sqrt{13}+7}{2} x=\frac{7-\sqrt{13}}{2}
The equation is now solved.
\left(x-3\right)x+\left(x-3\right)\left(-4\right)=3
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
x^{2}-3x+\left(x-3\right)\left(-4\right)=3
Use the distributive property to multiply x-3 by x.
x^{2}-3x-4x+12=3
Use the distributive property to multiply x-3 by -4.
x^{2}-7x+12=3
Combine -3x and -4x to get -7x.
x^{2}-7x=3-12
Subtract 12 from both sides.
x^{2}-7x=-9
Subtract 12 from 3 to get -9.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-9+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-9+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{13}{4}
Add -9 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{13}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{13}}{2} x-\frac{7}{2}=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}+7}{2} x=\frac{7-\sqrt{13}}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}