Solve for x
x=\left(\frac{8}{65}-\frac{1}{65}i\right)y+\left(-\frac{24}{65}+\frac{3}{65}i\right)
Solve for y
y=\left(8+i\right)x+3
Share
Copied to clipboard
x-3i=8ix-iy
Use the distributive property to multiply 8x-y by i.
x-3i-8ix=-iy
Subtract 8ix from both sides.
\left(1-8i\right)x-3i=-iy
Combine x and -8ix to get \left(1-8i\right)x.
\left(1-8i\right)x=-iy+3i
Add 3i to both sides.
\left(1-8i\right)x=3i-iy
The equation is in standard form.
\frac{\left(1-8i\right)x}{1-8i}=\frac{3i-iy}{1-8i}
Divide both sides by 1-8i.
x=\frac{3i-iy}{1-8i}
Dividing by 1-8i undoes the multiplication by 1-8i.
x=\left(\frac{8}{65}-\frac{1}{65}i\right)y+\left(-\frac{24}{65}+\frac{3}{65}i\right)
Divide -iy+3i by 1-8i.
x-3i=8ix-iy
Use the distributive property to multiply 8x-y by i.
8ix-iy=x-3i
Swap sides so that all variable terms are on the left hand side.
-iy=x-3i-8ix
Subtract 8ix from both sides.
-iy=\left(1-8i\right)x-3i
Combine x and -8ix to get \left(1-8i\right)x.
\frac{-iy}{-i}=\frac{\left(1-8i\right)x-3i}{-i}
Divide both sides by -i.
y=\frac{\left(1-8i\right)x-3i}{-i}
Dividing by -i undoes the multiplication by -i.
y=\left(8+i\right)x+3
Divide \left(1-8i\right)x-3i by -i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}