Solve for x
x = \frac{3 \sqrt{17} + 13}{2} \approx 12.684658438
Graph
Share
Copied to clipboard
x-3\sqrt{x}=2
Add 2 to both sides. Anything plus zero gives itself.
-3\sqrt{x}=2-x
Subtract x from both sides of the equation.
\left(-3\sqrt{x}\right)^{2}=\left(2-x\right)^{2}
Square both sides of the equation.
\left(-3\right)^{2}\left(\sqrt{x}\right)^{2}=\left(2-x\right)^{2}
Expand \left(-3\sqrt{x}\right)^{2}.
9\left(\sqrt{x}\right)^{2}=\left(2-x\right)^{2}
Calculate -3 to the power of 2 and get 9.
9x=\left(2-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x=4-4x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
9x+4x=4+x^{2}
Add 4x to both sides.
13x=4+x^{2}
Combine 9x and 4x to get 13x.
13x-x^{2}=4
Subtract x^{2} from both sides.
-x^{2}+13x=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+13x-4=4-4
Subtract 4 from both sides of the equation.
-x^{2}+13x-4=0
Subtracting 4 from itself leaves 0.
x=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 13 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 13.
x=\frac{-13±\sqrt{169+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-13±\sqrt{169-16}}{2\left(-1\right)}
Multiply 4 times -4.
x=\frac{-13±\sqrt{153}}{2\left(-1\right)}
Add 169 to -16.
x=\frac{-13±3\sqrt{17}}{2\left(-1\right)}
Take the square root of 153.
x=\frac{-13±3\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{3\sqrt{17}-13}{-2}
Now solve the equation x=\frac{-13±3\sqrt{17}}{-2} when ± is plus. Add -13 to 3\sqrt{17}.
x=\frac{13-3\sqrt{17}}{2}
Divide -13+3\sqrt{17} by -2.
x=\frac{-3\sqrt{17}-13}{-2}
Now solve the equation x=\frac{-13±3\sqrt{17}}{-2} when ± is minus. Subtract 3\sqrt{17} from -13.
x=\frac{3\sqrt{17}+13}{2}
Divide -13-3\sqrt{17} by -2.
x=\frac{13-3\sqrt{17}}{2} x=\frac{3\sqrt{17}+13}{2}
The equation is now solved.
\frac{13-3\sqrt{17}}{2}-3\sqrt{\frac{13-3\sqrt{17}}{2}}-2=0
Substitute \frac{13-3\sqrt{17}}{2} for x in the equation x-3\sqrt{x}-2=0.
9-3\times 17^{\frac{1}{2}}=0
Simplify. The value x=\frac{13-3\sqrt{17}}{2} does not satisfy the equation.
\frac{3\sqrt{17}+13}{2}-3\sqrt{\frac{3\sqrt{17}+13}{2}}-2=0
Substitute \frac{3\sqrt{17}+13}{2} for x in the equation x-3\sqrt{x}-2=0.
0=0
Simplify. The value x=\frac{3\sqrt{17}+13}{2} satisfies the equation.
x=\frac{3\sqrt{17}+13}{2}
Equation -3\sqrt{x}=2-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}