Evaluate
x = -\frac{61}{10} = -6\frac{1}{10} = -6.1
Expand
x = -\frac{61}{10} = -6\frac{1}{10} = -6.1
Graph
Share
Copied to clipboard
x-\frac{60+1}{20}-\frac{3\times 20+1}{20}
Multiply 3 and 20 to get 60.
x-\frac{61}{20}-\frac{3\times 20+1}{20}
Add 60 and 1 to get 61.
x-\frac{61}{20}-\frac{60+1}{20}
Multiply 3 and 20 to get 60.
x-\frac{61}{20}-\frac{61}{20}
Add 60 and 1 to get 61.
x+\frac{-61-61}{20}
Since -\frac{61}{20} and \frac{61}{20} have the same denominator, subtract them by subtracting their numerators.
x+\frac{-122}{20}
Subtract 61 from -61 to get -122.
x-\frac{61}{10}
Reduce the fraction \frac{-122}{20} to lowest terms by extracting and canceling out 2.
x-\frac{60+1}{20}-\frac{3\times 20+1}{20}
Multiply 3 and 20 to get 60.
x-\frac{61}{20}-\frac{3\times 20+1}{20}
Add 60 and 1 to get 61.
x-\frac{61}{20}-\frac{60+1}{20}
Multiply 3 and 20 to get 60.
x-\frac{61}{20}-\frac{61}{20}
Add 60 and 1 to get 61.
x+\frac{-61-61}{20}
Since -\frac{61}{20} and \frac{61}{20} have the same denominator, subtract them by subtracting their numerators.
x+\frac{-122}{20}
Subtract 61 from -61 to get -122.
x-\frac{61}{10}
Reduce the fraction \frac{-122}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}