Solve for r
r=\frac{93x}{2500}
Solve for x
x=\frac{2500r}{93}
Share
Copied to clipboard
100x-2500r=7x
Multiply both sides of the equation by 100.
-2500r=7x-100x
Subtract 100x from both sides.
-2500r=-93x
Combine 7x and -100x to get -93x.
\frac{-2500r}{-2500}=-\frac{93x}{-2500}
Divide both sides by -2500.
r=-\frac{93x}{-2500}
Dividing by -2500 undoes the multiplication by -2500.
r=\frac{93x}{2500}
Divide -93x by -2500.
100x-2500r=7x
Multiply both sides of the equation by 100.
100x-2500r-7x=0
Subtract 7x from both sides.
93x-2500r=0
Combine 100x and -7x to get 93x.
93x=2500r
Add 2500r to both sides. Anything plus zero gives itself.
\frac{93x}{93}=\frac{2500r}{93}
Divide both sides by 93.
x=\frac{2500r}{93}
Dividing by 93 undoes the multiplication by 93.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}