Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{x+y}{2y}\text{, }&y\neq 0\\h\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{x+y}{2y}\text{, }&y\neq 0\\h\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
x=y\left(2h-1\right)
Graph
Share
Copied to clipboard
-2hy+y=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
-2hy=-x-y
Subtract y from both sides.
\left(-2y\right)h=-x-y
The equation is in standard form.
\frac{\left(-2y\right)h}{-2y}=\frac{-x-y}{-2y}
Divide both sides by -2y.
h=\frac{-x-y}{-2y}
Dividing by -2y undoes the multiplication by -2y.
h=\frac{x}{2y}+\frac{1}{2}
Divide -x-y by -2y.
-2hy+y=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
-2hy=-x-y
Subtract y from both sides.
\left(-2y\right)h=-x-y
The equation is in standard form.
\frac{\left(-2y\right)h}{-2y}=\frac{-x-y}{-2y}
Divide both sides by -2y.
h=\frac{-x-y}{-2y}
Dividing by -2y undoes the multiplication by -2y.
h=\frac{x}{2y}+\frac{1}{2}
Divide -x-y by -2y.
x+y=2hy
Add 2hy to both sides. Anything plus zero gives itself.
x=2hy-y
Subtract y from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}