Solve for x (complex solution)
x=-13+2\sqrt{14}i\approx -13+7.483314774i
Graph
Share
Copied to clipboard
x-2\sqrt{x}=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
-2\sqrt{x}=-15-x
Subtract x from both sides of the equation.
\left(-2\sqrt{x}\right)^{2}=\left(-15-x\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-15-x\right)^{2}
Expand \left(-2\sqrt{x}\right)^{2}.
4\left(\sqrt{x}\right)^{2}=\left(-15-x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4x=\left(-15-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x=225+30x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-15-x\right)^{2}.
4x-30x=225+x^{2}
Subtract 30x from both sides.
-26x=225+x^{2}
Combine 4x and -30x to get -26x.
-26x-x^{2}=225
Subtract x^{2} from both sides.
-x^{2}-26x=225
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-26x-225=225-225
Subtract 225 from both sides of the equation.
-x^{2}-26x-225=0
Subtracting 225 from itself leaves 0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-1\right)\left(-225\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -26 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\left(-1\right)\left(-225\right)}}{2\left(-1\right)}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676+4\left(-225\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-26\right)±\sqrt{676-900}}{2\left(-1\right)}
Multiply 4 times -225.
x=\frac{-\left(-26\right)±\sqrt{-224}}{2\left(-1\right)}
Add 676 to -900.
x=\frac{-\left(-26\right)±4\sqrt{14}i}{2\left(-1\right)}
Take the square root of -224.
x=\frac{26±4\sqrt{14}i}{2\left(-1\right)}
The opposite of -26 is 26.
x=\frac{26±4\sqrt{14}i}{-2}
Multiply 2 times -1.
x=\frac{26+4\sqrt{14}i}{-2}
Now solve the equation x=\frac{26±4\sqrt{14}i}{-2} when ± is plus. Add 26 to 4i\sqrt{14}.
x=-2\sqrt{14}i-13
Divide 26+4i\sqrt{14} by -2.
x=\frac{-4\sqrt{14}i+26}{-2}
Now solve the equation x=\frac{26±4\sqrt{14}i}{-2} when ± is minus. Subtract 4i\sqrt{14} from 26.
x=-13+2\sqrt{14}i
Divide 26-4i\sqrt{14} by -2.
x=-2\sqrt{14}i-13 x=-13+2\sqrt{14}i
The equation is now solved.
-2\sqrt{14}i-13-2\sqrt{-2\sqrt{14}i-13}+15=0
Substitute -2\sqrt{14}i-13 for x in the equation x-2\sqrt{x}+15=0.
-4i\times 14^{\frac{1}{2}}+4=0
Simplify. The value x=-2\sqrt{14}i-13 does not satisfy the equation.
-13+2\sqrt{14}i-2\sqrt{-13+2\sqrt{14}i}+15=0
Substitute -13+2\sqrt{14}i for x in the equation x-2\sqrt{x}+15=0.
0=0
Simplify. The value x=-13+2\sqrt{14}i satisfies the equation.
x=-13+2\sqrt{14}i
Equation -2\sqrt{x}=-x-15 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}