Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)^{2}=\left(\sqrt{2x+7}\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(\sqrt{2x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=2x+7
Calculate \sqrt{2x+7} to the power of 2 and get 2x+7.
x^{2}-4x+4-2x=7
Subtract 2x from both sides.
x^{2}-6x+4=7
Combine -4x and -2x to get -6x.
x^{2}-6x+4-7=0
Subtract 7 from both sides.
x^{2}-6x-3=0
Subtract 7 from 4 to get -3.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+12}}{2}
Multiply -4 times -3.
x=\frac{-\left(-6\right)±\sqrt{48}}{2}
Add 36 to 12.
x=\frac{-\left(-6\right)±4\sqrt{3}}{2}
Take the square root of 48.
x=\frac{6±4\sqrt{3}}{2}
The opposite of -6 is 6.
x=\frac{4\sqrt{3}+6}{2}
Now solve the equation x=\frac{6±4\sqrt{3}}{2} when ± is plus. Add 6 to 4\sqrt{3}.
x=2\sqrt{3}+3
Divide 6+4\sqrt{3} by 2.
x=\frac{6-4\sqrt{3}}{2}
Now solve the equation x=\frac{6±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from 6.
x=3-2\sqrt{3}
Divide 6-4\sqrt{3} by 2.
x=2\sqrt{3}+3 x=3-2\sqrt{3}
The equation is now solved.
2\sqrt{3}+3-2=\sqrt{2\left(2\sqrt{3}+3\right)+7}
Substitute 2\sqrt{3}+3 for x in the equation x-2=\sqrt{2x+7}.
2\times 3^{\frac{1}{2}}+1=2\times 3^{\frac{1}{2}}+1
Simplify. The value x=2\sqrt{3}+3 satisfies the equation.
3-2\sqrt{3}-2=\sqrt{2\left(3-2\sqrt{3}\right)+7}
Substitute 3-2\sqrt{3} for x in the equation x-2=\sqrt{2x+7}.
1-2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}-1
Simplify. The value x=3-2\sqrt{3} does not satisfy the equation because the left and the right hand side have opposite signs.
x=2\sqrt{3}+3
Equation x-2=\sqrt{2x+7} has a unique solution.