Solve for x
x=64
x=49
Graph
Share
Copied to clipboard
x-15\sqrt{x}=-56
Subtract 56 from both sides. Anything subtracted from zero gives its negation.
-15\sqrt{x}=-56-x
Subtract x from both sides of the equation.
\left(-15\sqrt{x}\right)^{2}=\left(-56-x\right)^{2}
Square both sides of the equation.
\left(-15\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-56-x\right)^{2}
Expand \left(-15\sqrt{x}\right)^{2}.
225\left(\sqrt{x}\right)^{2}=\left(-56-x\right)^{2}
Calculate -15 to the power of 2 and get 225.
225x=\left(-56-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
225x=3136+112x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-56-x\right)^{2}.
225x-112x=3136+x^{2}
Subtract 112x from both sides.
113x=3136+x^{2}
Combine 225x and -112x to get 113x.
113x-x^{2}=3136
Subtract x^{2} from both sides.
-x^{2}+113x=3136
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+113x-3136=3136-3136
Subtract 3136 from both sides of the equation.
-x^{2}+113x-3136=0
Subtracting 3136 from itself leaves 0.
x=\frac{-113±\sqrt{113^{2}-4\left(-1\right)\left(-3136\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 113 for b, and -3136 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-113±\sqrt{12769-4\left(-1\right)\left(-3136\right)}}{2\left(-1\right)}
Square 113.
x=\frac{-113±\sqrt{12769+4\left(-3136\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-113±\sqrt{12769-12544}}{2\left(-1\right)}
Multiply 4 times -3136.
x=\frac{-113±\sqrt{225}}{2\left(-1\right)}
Add 12769 to -12544.
x=\frac{-113±15}{2\left(-1\right)}
Take the square root of 225.
x=\frac{-113±15}{-2}
Multiply 2 times -1.
x=-\frac{98}{-2}
Now solve the equation x=\frac{-113±15}{-2} when ± is plus. Add -113 to 15.
x=49
Divide -98 by -2.
x=-\frac{128}{-2}
Now solve the equation x=\frac{-113±15}{-2} when ± is minus. Subtract 15 from -113.
x=64
Divide -128 by -2.
x=49 x=64
The equation is now solved.
49-15\sqrt{49}+56=0
Substitute 49 for x in the equation x-15\sqrt{x}+56=0.
0=0
Simplify. The value x=49 satisfies the equation.
64-15\sqrt{64}+56=0
Substitute 64 for x in the equation x-15\sqrt{x}+56=0.
0=0
Simplify. The value x=64 satisfies the equation.
x=49 x=64
List all solutions of -15\sqrt{x}=-x-56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}