Solve for V
V=\frac{1}{13}+\frac{40}{13x}
x\neq 0
Solve for x
x=-\frac{40}{1-13V}
V\neq \frac{1}{13}
Graph
Share
Copied to clipboard
-13Vx+40=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
-13Vx=-x-40
Subtract 40 from both sides.
\left(-13x\right)V=-x-40
The equation is in standard form.
\frac{\left(-13x\right)V}{-13x}=\frac{-x-40}{-13x}
Divide both sides by -13x.
V=\frac{-x-40}{-13x}
Dividing by -13x undoes the multiplication by -13x.
V=\frac{1}{13}+\frac{40}{13x}
Divide -x-40 by -13x.
x-13Vx=-40
Subtract 40 from both sides. Anything subtracted from zero gives its negation.
\left(1-13V\right)x=-40
Combine all terms containing x.
\frac{\left(1-13V\right)x}{1-13V}=-\frac{40}{1-13V}
Divide both sides by 1-13V.
x=-\frac{40}{1-13V}
Dividing by 1-13V undoes the multiplication by 1-13V.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}