Solve for x
x=64
x=25
Graph
Share
Copied to clipboard
x-13\sqrt{x}=-40
Subtract 40 from both sides. Anything subtracted from zero gives its negation.
-13\sqrt{x}=-40-x
Subtract x from both sides of the equation.
\left(-13\sqrt{x}\right)^{2}=\left(-40-x\right)^{2}
Square both sides of the equation.
\left(-13\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-40-x\right)^{2}
Expand \left(-13\sqrt{x}\right)^{2}.
169\left(\sqrt{x}\right)^{2}=\left(-40-x\right)^{2}
Calculate -13 to the power of 2 and get 169.
169x=\left(-40-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
169x=1600+80x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-40-x\right)^{2}.
169x-80x=1600+x^{2}
Subtract 80x from both sides.
89x=1600+x^{2}
Combine 169x and -80x to get 89x.
89x-x^{2}=1600
Subtract x^{2} from both sides.
-x^{2}+89x=1600
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+89x-1600=1600-1600
Subtract 1600 from both sides of the equation.
-x^{2}+89x-1600=0
Subtracting 1600 from itself leaves 0.
x=\frac{-89±\sqrt{89^{2}-4\left(-1\right)\left(-1600\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 89 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-89±\sqrt{7921-4\left(-1\right)\left(-1600\right)}}{2\left(-1\right)}
Square 89.
x=\frac{-89±\sqrt{7921+4\left(-1600\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-89±\sqrt{7921-6400}}{2\left(-1\right)}
Multiply 4 times -1600.
x=\frac{-89±\sqrt{1521}}{2\left(-1\right)}
Add 7921 to -6400.
x=\frac{-89±39}{2\left(-1\right)}
Take the square root of 1521.
x=\frac{-89±39}{-2}
Multiply 2 times -1.
x=-\frac{50}{-2}
Now solve the equation x=\frac{-89±39}{-2} when ± is plus. Add -89 to 39.
x=25
Divide -50 by -2.
x=-\frac{128}{-2}
Now solve the equation x=\frac{-89±39}{-2} when ± is minus. Subtract 39 from -89.
x=64
Divide -128 by -2.
x=25 x=64
The equation is now solved.
25-13\sqrt{25}+40=0
Substitute 25 for x in the equation x-13\sqrt{x}+40=0.
0=0
Simplify. The value x=25 satisfies the equation.
64-13\sqrt{64}+40=0
Substitute 64 for x in the equation x-13\sqrt{x}+40=0.
0=0
Simplify. The value x=64 satisfies the equation.
x=25 x=64
List all solutions of -13\sqrt{x}=-x-40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}