Solve for x
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
10x-10\left(5x-1\right)-\left(7-5x\right)=10
Multiply both sides of the equation by 10.
10x-50x+10-\left(7-5x\right)=10
Use the distributive property to multiply -10 by 5x-1.
-40x+10-\left(7-5x\right)=10
Combine 10x and -50x to get -40x.
-40x+10-7-\left(-5x\right)=10
To find the opposite of 7-5x, find the opposite of each term.
-40x+10-7+5x=10
The opposite of -5x is 5x.
-40x+3+5x=10
Subtract 7 from 10 to get 3.
-35x+3=10
Combine -40x and 5x to get -35x.
-35x=10-3
Subtract 3 from both sides.
-35x=7
Subtract 3 from 10 to get 7.
x=\frac{7}{-35}
Divide both sides by -35.
x=-\frac{1}{5}
Reduce the fraction \frac{7}{-35} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}