Solve for x
x\geq \frac{3}{145}
Graph
Share
Copied to clipboard
10x-10\left(5x-1\right)\leq 7-5x+110x
Multiply both sides of the equation by 10. Since 10 is positive, the inequality direction remains the same.
10x-50x+10\leq 7-5x+110x
Use the distributive property to multiply -10 by 5x-1.
-40x+10\leq 7-5x+110x
Combine 10x and -50x to get -40x.
-40x+10\leq 7+105x
Combine -5x and 110x to get 105x.
-40x+10-105x\leq 7
Subtract 105x from both sides.
-145x+10\leq 7
Combine -40x and -105x to get -145x.
-145x\leq 7-10
Subtract 10 from both sides.
-145x\leq -3
Subtract 10 from 7 to get -3.
x\geq \frac{-3}{-145}
Divide both sides by -145. Since -145 is negative, the inequality direction is changed.
x\geq \frac{3}{145}
Fraction \frac{-3}{-145} can be simplified to \frac{3}{145} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}